4 resultados para the Xiaojang watershed (China)

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eclogites from paragneiss in the Korean Peninsula are characterized by a peak pressure assemblage of garnet + omphacite + quartz + rutile, that is overprinted by multiphase symplectites involving augite, amphibole, orthopyroxene, ilmenite and plagioclase and by a similar high-pressure assemblage with a pronounced absence of the omphacite component in clinopyroxene formed during the peak and orthopyroxene in the retrograde stage. Eclogites were metamorphosed at a minimum pressures of not, vert, similar 20–23 kbar at temperatures of not, vert, similar 840–1000 °C, equivalent to a crustal depth of not, vert, similar 70–75 km, whereas high-pressure granulite in Late Paleozoic rocks underwent metamorphic conditions of not, vert, similar 18–19 kbar at not, vert, similar 950 °C with a minimum crustal depth of not, vert, similar 60–65 km. The presence of the eclogites and high-pressure granulite suggests deep-seated subduction of crustal complexes with metamorphism at different crustal levels. The eclogites were exhumed quickly resulting in near- isothermal decompression. On the other hand, the multistage exhumation of the high-pressure granulites suggests retrograde overprinting after initial decompression. The similarity of these petrological characteristics, metamorphic conditions and also the regional structural styles with those of the Sulu belt (China) strongly suggests the existence of a Permo-Triassic Alpine-type “Korean collision belt” in Far East Asia. This model provides a better understanding of the paleogeograpic evolution of Permo-Triassic East Asia, including a robust tectonic correlation of the Korean collision belt with the Qinling–Dabie–Sulu collision belt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Community-based natural resource management (CBNRM) is the joint management of natural resources by a community based on a community strategy, through a participatory mechanism involving all legitimate stakeholders. The approach is community-based in that the communities managing the resources have the legal rights, the local institutions and the economic incentives to take substantial responsibility for sustained use of these resources. This implies that the community plays an active role in the management of natural resources, not because it asserts sole ownership over them, but because it can claim participation in their management and benefits for practical and technical reasons1–4. This approach emerged as the dominant conservation concept in the late 1970s and early 1980s, of the disillusionment with the developmental state. Governments across South and South East Asia, Africa and Latin America have adopted and implemented CBNRM in various ways, viz. through sectoral programmes such as forestry, irrigation or wildlife management, multisectoral programmes such as watershed development and efforts towards political devolution. In India, the principle of decentralization through ‘gram swaraj’ was introduced by Mahatma Gandhi. The 73rd and 74th constitution amendments in 1992 gave impetus to the decentralized planning at panchayat levels through the creation of a statutory three-level local self-government structure5,6. The strength of this book is that it includes chapters by CBNRM advocates based on six seemingly innovative initiatives being implemented by nongovernmental organizations (NGOs) in ecologically vulnerable regions of South Asia: two in the Himalayas (watershed development programme in Lingmutechhu, Bhuthan and Thalisain tehsil, Paudi Grahwal District, Uttarakhand), three in semi-arid parts of western India (watershed development in Hivre Bazar, Maharashtra and Nathugadh village, Gujarat and water-harvesting structures in Gopalapura, Rajasthan) and one in the flood-plains of the Brahmaputra–Jamuna (Char land, Galibanda and Jamalpur districts, Bangladesh). Watersheds in semi-arid regions fall in the low-rainfall region (500–700 mm) and suffer the vagaries of drought 2–3 years in every five-year cycle. In all these locations, the major occupation is agriculture, most of which is rainfed or dry. The other two cases (in Uttarakhand) fall in the Himalayan region (temperate/sub-temperate climate), which has witnessed extensive deforestation in the last century and is now considered as one of the most vulnerable locations in South Asia. Terraced agriculture is being practised in these locations for a long time. The last case (Gono Chetona) falls in the Brahmaputra–Jamuna charlands which are the most ecologically vulnerable regions in the sub-continent with constantly changing landscape. Agriculture and livestock rearing are the main occupations, and there is substantial seasonal emigration for wage labour by the adult males. River erosion and floods force the people to adopt a semi-migratory lifestyle. The book attempts to analyse the potential as well as limitations of NGOdriven CBNRM endeavours across agroclimatic regions of South Asia with emphasis on four intrinsically linked normative concerns, namely sustainability, livelihood enhancement, equity and demographic decentralization in chapters 2–7. Comparative analysis of these case studies done in chapter 8, highlights the issues that require further research while portraying the strengths and limits of NGO-driven CBNRM. In Hivre Bazar, the post-watershed intervention scenario is such that farmers often grow three crops in a year – kharif bajra, rabi jowar and summer vegetable crops. Productivity has increased in the dry lands due to improvement in soil moisture levels. The revival of johads in Gopalpura has led to the proliferation of wheat and increased productivity. In Lingmuteychhu, productivity gains have also arisen, but more due to the introduction of both local and high-yielding, new varieties as opposed to increased water availability. In the case of Gono Chetona, improvements have come due to diversification of agriculture; for example, the promotion of vegetable gardens. CBNRM interventions in most cases have also led to new avenues of employment and income generation. The synthesis shows that CBNRM efforts have made significant contributions to livelihood enhancement and only limited gains in terms of collective action for sustainable and equitable access to benefits and continuing resource use, and in terms of democratic decentralization, contrary to the objectives of the programme. Livelihood benefits include improvements in availability of livelihood support resources (fuelwood, fodder, drinking water), increased productivity (including diversification of cropping pattern) in agriculture and allied activities, and new sources of livelihood. However, NGO-driven CBNRM has not met its goal of providing ‘alternative’ forms of ‘development’ due to impediments of state policy, short-sighted vision of implementers and confrontation with the socio-ecological reality of the region, which almost always are that of fragmented communities (or communities in flux) with unequal dependence and access to land and other natural resources along with great gender imbalances. Appalling, however, is the general absence of recognition of the importance of and the will to explore practical ways to bring about equitable resource transfer or benefit-sharing and the consequent innovations in this respect that are evident in the pioneering community initiatives such as pani panchayat, etc. Pertaining to the gains on the ecological sustainability front, Hivre Bazar and Thalisain initiatives through active participation of villagers have made significant regeneration of the water table within the village, and mechanisms such as ban on number of bore wells, the regulation of cropping pattern, restrictions on felling of trees and free grazing to ensure that in the future, the groundwater is neither over-exploited nor its recharge capability impaired. Nevertheless, the longterm sustainability of the interventions in the case of Ghoga and Gopalpura initiatives as the focus has been mostly on regeneration of resources, and less on regulating the use of regenerated resources. Further, in Lingmuteychhu and Gono Chetona, the interventions are mainly household-based and the focus has been less explicit on ecological components. The studies demonstrate the livelihood benefits to all of the interventions and significant variation in achievements with reference to sustainability, equity and democratic decentralization depending on the level and extent of community participation apart from the vision of implementers, strategy (or nature of intervention shaped by the question of community formation), the centrality of community formation and also the State policy. Case studies show that the influence of State policy is multi-faceted and often contradictory in nature. This necessitates NGOs to engage with the State in a much more purposeful way than in an ‘autonomous space’. Thus the role of NGOs in CBNRM is complementary, wherein they provide innovative experiments that the State can learn. This helps in achieving the goals of CBNRM through democratic decentralization. The book addresses the vital issues related to natural resource management and interests of the community. Key topics discussed throughout the book are still at the centre of the current debate. This compilation consists of well-written chapters based on rigorous synthesis of CBNRM case studies, which will serve as good references for students, researchers and practitioners in the years to come.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Silicate Weathering Rate (SWR) and associated Carbon dioxide Consumption Rate (CCR) in tropical silicate terrain is assessed through a study of the major ion chemistry in a small west flowing river of Peninsular India, the Nethravati River. The specific features of the river basin are high mean annual rainfall and temperature, high runoff and a Precambrian basement composed of granitic-gneiss, charnockite and minor metasediments. The water samples (n = 56) were collected from three locations along the Nethravati River and from two of its tributaries over a period of twelve months. Chemical Weathering Rate (CWR) for the entire watershed is calculated by applying rainwater correction using river chloride as a tracer. Chemical Weathering Rate in the Nethravati watershed is estimated to 44 t.km(-2).y(-1) encompassing a SWR of 42 t.km(-2).y(-1) and a maximum carbonate contribution of 2 t.km(-2).y(-1). This SWR is among the highest reported for granito-gneissic terrains. The assessed CCR is 2.9 . 10(5) mol.km(-2).y(-1). The weathering index (Re). calculated from molecular ratios of dissolved cations and silica in the river, suggests an intense silicate weathering leading to kaolinite-gibbsite precipitation in the weathering covers. The intense SWR and CCR could be due to the combination of high runoff and temperature along with the thickness and nature of the weathering cover. The comparison of silicate weathering fluxes with other watersheds reveals that under similar morpho-climatic settings basalt weathering would be 2.5 times higher than the granite-gneissic rocks. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional frequency analysis is widely used for estimating quantiles of hydrological extreme events at sparsely gauged/ungauged target sites in river basins. It involves identification of a region (group of watersheds) resembling watershed of the target site, and use of information pooled from the region to estimate quantile for the target site. In the analysis, watershed of the target site is assumed to completely resemble watersheds in the identified region in terms of mechanism underlying generation of extreme event. In reality, it is rare to find watersheds that completely resemble each other. Fuzzy clustering approach can account for partial resemblance of watersheds and yield region(s) for the target site. Formation of regions and quantile estimation requires discerning information from fuzzy-membership matrix obtained based on the approach. Practitioners often defuzzify the matrix to form disjoint clusters (regions) and use them as the basis for quantile estimation. The defuzzification approach (DFA) results in loss of information discerned on partial resemblance of watersheds. The lost information cannot be utilized in quantile estimation, owing to which the estimates could have significant error. To avert the loss of information, a threshold strategy (TS) was considered in some prior studies. In this study, it is analytically shown that the strategy results in under-prediction of quantiles. To address this, a mathematical approach is proposed in this study and its effectiveness in estimating flood quantiles relative to DFA and TS is demonstrated through Monte-Carlo simulation experiments and case study on Mid-Atlantic water resources region, USA. (C) 2015 Elsevier B.V. All rights reserved.