27 resultados para the Prime Minister

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prime movers and refrigerators based on thermoacoustics have gained considerable importance toward practical applications in view of the absence of moving components, reasonable efficiency, use of environmental friendly working fluids, etc. Devices such as twin Standing Wave ThermoAcoustic Prime Mover (SWTAPM), Traveling Wave ThermoAcoustic Prime Mover (TWTAPM) and thermoacoustically driven Standing Wave ThermoAcoustic Refrigerator (SWTAR) have been studied by researchers. The numerical modeling and simulation play a vital role in their development. In our efforts to build the above thermoacoustic systems, we have carried out numerical analysis using the procedures of CFD on the above systems. The results of the analysis are compared with those of DeltaEC (freeware from LANL, USA) simulations and the experimental results wherever possible. For the CFD analysis commercial code Fluent 6.3.26 has been used along with the necessary boundary conditions for different working fluids at various average pressures. The results of simulation indicate that choice of the working fluid and the average pressure are critical to the performance of the above thermoacoustic devices. Also it is observed that the predictions through the CFD analysis are closer to the experimental results in most cases, compared to those of DeltaEC simulations. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An attempt to diagnose the dominant forcings which drive the large-scale vertical velocities over the monsoon region has been made by computing the forcings like diabatic heating fields,etc. and the large-scale vertical velocities driven by these forcings for the contrasting periods of active and break monsoon situations; in order to understand the rainfall variability associated with them. Computation of diabatic heating fields show us that among different components of diabatic heating it is the convective heating that dominates at mid-tropospheric levels during an active monsoon period; whereas it is the sensible heating at the surface that is important during a break period. From vertical velocity calculations we infer that the prime differences in the large-scale vertical velocities seen throughout the depth of the atmosphere are due to the differences in the orders of convective heating; the maximum rate of latent heating being more than 10 degrees Kelvin per day during an active monsoon period; whereas during a break monsoon period it is of the order of 2 degrees Kelvin per day at mid-tropospheric levels. At low levels of the atmosphere, computations show that there is large-scale ascent occurring over a large spatial region, driven only by the dynamic forcing associated with vorticity and temperature advection during an active monsoon period. However, during a break monsoon period such large-scale spatial organization in rising motion is not seen. It is speculated that these differences in the low-level large-scale ascent might be causing differences in convective heating because the weaker the low level ascent, the lesser the convective instability which produces deep cumulus clouds and hence lesser the associated latent heat release. The forcings due to other components of diabatic heating, namely, the sensible heating and long wave radiative cooling do not influence the large-scale vertical velocities significantly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When an Indian prime minister publicly admits that India has fallen behind China, it is news. Manmohan Singh's statement last January at the Indian Science Congress in Bhubaneswar that this is so with respect to scientific research, and that “India's relative position in the world of science has been declining”, has rung alarm bells. Singh was not springing anything new on Indian scientists; many of us will admit that things are not well1. Recognizing the problem is the first step towards reversing this slide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermoacoustic prime mover is part of an interesting class of prime movers that can be used to generate clean energy and to drive cryogenic refrigeration systems. A thermoacoustic prime mover has been built based on the linear thermoacoustic model, which consumes thermal energy and produces acoustic energy. The objective of this article is to design a thermoacoustic prime mover that can be used as a drive for a thermoacoustic refrigerator. It is found that stack plate length and its distance from the closed end have a significant effect on the thermal efficiency of the prime mover. For different stack center positions, there is an optimum length of stack plate that has a significant effect on the performance of the thermoacoustic prime mover in terms of temperature gradient, frequency, and pressure amplitude. In this study, the experiments have been done on the thermoacoustic prime mover by varying stack position and its length with constant blockage ratio and resonator length. The results obtained from the experiments have been compared to the theoretical results acquired from DeltaEc Software.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we develop a cipher system based on finite field transforms. In this system, blocks of the input character-string are enciphered using congruence or modular transformations with respect to either primes or irreducible polynomials over a finite field. The polynomial system is shown to be clearly superior to the prime system for conventional cryptographic work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acta Crystallographica Section A: Foundations of Crystallography covers theoretical and fundamental aspects of the structure of matter. The journal is the prime forum for research in diffraction physics and the theory of crystallographic structure determination by diffraction methods using X-rays, neutrons and electrons. The structures include periodic and aperiodic crystals, and non-periodic disordered materials, and the corresponding Bragg, satellite and diffuse scattering, thermal motion and symmetry aspects. Spatial resolutions range from the subatomic domain in charge-density studies to nanodimensional imperfections such as dislocations and twin walls. The chemistry encompasses metals, alloys, and inorganic, organic and biological materials. Structure prediction and properties such as the theory of phase transformations are also covered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Riboflavin carrier protein (RCP) is obligatorily involved in yolk deposition of the vitamin, riboflavin, in the developing oocyte of the hen. The production of this protein is inducible by oestrogen. It is evolutionarily conserved in terms of its physicochemical, immunological and functional characteristics. It is the prime mediator of vitamin supply to the developing fetus in mammals, including primates. Passive immunoneutralization of the protein terminates pregnancy in rats. Active immunization of rats and bonnet monkeys with avian RCP prevents pregnancy without causing any adverse physiological effects of the mother in terms of her vitamin status, reproductive cycles or reproductive-endocrine profile. Denatured, linearized RCP is more effective in eliciting neutralizing antibodies capable of interfering with embryonic viability either before or during peri-implantation stages. Two defined stretches of sequential epitopes, one located at the N-terminus and the other at the C-terminus of the protein have been identified. Active immunization with either of these epitopes conjugated with diptheria toxoid curtails pregnancy in rats and monkeys. Immunohistochemical localization of RCP on ovulated oocytes and early embryos shows that the antibodies cause degeneration only of early embryos. RCP is produced intra-testicularly and becomes localized on acrosomal surface of mammalian spermatozoa. Active immunization of male rats and monkeys with denatured RCP markedly reduces fertility by impairing the fertilizing potential of spermatozoa. These findings suggest that RCP, or its defined fragments, could be a novel, first generation vaccine for regulating fertility in both the sexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wear of dies is a serious problem in the forging industry. The materials used for the dies are generally expensive steel alloys and the dies require costly heat treatment and surface finishing operations. Degeneration of the die profile implies rejection of forged components and necessitates resinking or replacement of the die. Measures which reduce wear of the die can therefore aid in the reduction of production costs. The work reported here is the first phase of a study of the causes of die wear in forging production where the batch size is small and the machine employed is a light hammer. This is a problem characteristic of the medium and small scale area of the forging industry where the cost of dies is a significant proportion of the total capital investment. For the same energy input and under unlubricated conditions, die wear has been found to be sensitive to forging temperature; in cold forging the yield strength of the die material is the prime factor governing the degeneration of the die profile, whilst in hot forging the wear resistance of the die material is the main factor which determines the rate of die wear. At an intermediate temperature, such as that characteristic of warm forging, the die wear is found to be less than that in both cold and hot forging. This preliminary study therefore points to the fact that the forging temperature must be taken into account in the selection of die material. Further, the forging industry must take serious note of the warm forging process, as it not only provides good surface finish, as claimed by many authors, but also has an inherent tendency to minimize die wear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evaluation and design of shore protection works in the case of tsunamis assumes considerable importance in view of the impact it had in the recent tsunami of 26th December 2004 in India and other countries in Asia. The fact that there are no proper guidelines have made in the matters worse and resulted in the magnitude of damage that occurred. Survey of the damages indicated that the scour as a result of high velocities is one of the prime reasons for damages in the case of simple structures. It is revealed that sea walls in some cases have been helpful to minimize the damages. The objective of this paper is to suggest that design of shore line protection systems using expected wave heights that get generated and use of flexible systems such as geocells is likely to give a better protection. The protection systems can be designed to withstand the wave forces that corresponding to different probabilities of incidence. A design approach of geocells protection system is suggested and illustrated with reference to the data of wave heights in the east coast of India.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a modernising world, building and construction trends in recent urban centres such as Bangalore, set precedence for developments in other urban centres of the country. Under such conditions, evaluating the current state of building practices could prove useful for identifying the likely nature of nationwide building trends. This paper comprises a study to evaluate the current state of domestic concealed wiring practices in the context of a modern urban centre area in India. Presently, concealed wiring is the predominant wiring method adopted for residences, both bungalows and apartments. A modern residential block in the city of Bangalore (India) was chosen as the study area. The study included extensive interaction and surveys amongst residents, professionals (architects and engineers) and site personnel (contractors and electricians). In addition, the study also included site verification on the state of wiring practices in the residential block. The study indicates that while aesthetics was the prime reason that dictated the choice of concealed wiring, its effectiveness as an appropriate and safe wiring method is severely compromised. Details of the study, results and recommendations are presented in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 +/- 0.2%. This system shows much promise for automation in an industrial environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Internal haemorrhage, often leading to cardio-vascular arrest happens to be one of the prime sources of high fatality rates in mammals. We propose a simplistic model of fluid flow in our attempt to specify the location of the haemorrhagic spot, which, if located accurately, could possibly be operated leading to an instant cure. The model we employ for the purpose is basically fluid mechanical in origin and consists of a viscous fluid, pumped by a periodic force and flowing through an elastic tube. The analogy is with that of blood, pumped from the heart and flowing through an artery or vein. Our results, aided by graphical illustrations, match reasonably well with experimental observations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At the present time, materials with dimensions in the range of microns to nanometers have become the prime objects of vigorous research activities of all over the world. The possibility of artificially creating novel materials with exotic and tailor made properties that are essential for future development in the frontier areas of electronics, photonics, spintronics etc has generated much interest in the study of these mesoscopic and nanoscopic materials. These materials also have the potential for wide ranging economically viable technological, industrial, engineering and bio-medical applications. They may consist of metals , alloys , ceramics, polymers, composites and biological materials; which are usually assembled at the atomic / molecular level to achieve new properties. Understanding the underlying science and characterization of these new materials with a view of harnessing their exotic properties is the prime focus of the researchers. These Proceedings address these issues relating to mesoscopic, nanoscopic and macroscopic materials.