3 resultados para the 17th Century
em Indian Institute of Science - Bangalore - Índia
Resumo:
We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation coefficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle either from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.
Resumo:
The 21st century poses many challenges for global sustainability. Among them, most importantly, the human race will encounter scarcity of raw materials and conventional energy resources. And, India may have to take the brunt of these problems as it is going to be the most populated region of the world with concomitant increase in energy demand and requirement of other resources. India will be the testing ground for introducing newer ways of green technology and innovative principles of resource management and utilization. With the vagaries of potential climate change gathering clouds in the background, Earth sciences will have a special and predominant role in guiding the society in prioritizing our resource discovery, utilization and their consumption and the upkeep of environment. On the fundamental level, Earth sciences are going through a most exciting phase of development as a born-again science. Technological breakthroughs including the satellite-based observations augur well for gaining new insights into Earth processes. A set of exciting fundamental problems that are globally identified will set the stage for an exhilarating period of new discoveries. Improvements in numerical and computer-based techniques will assist in modelling of Earth processes to unprecedented levels. India will have to take special effort in improving the existing experimentation facilities in the Earth science departments of the country, and also the general level of Earth science education to meet the global standards. This article presents an Earth science vision for the 21st century in an Indian context.