80 resultados para terminal patient
em Indian Institute of Science - Bangalore - Índia
Resumo:
An explicit near-optimal guidance scheme is developed for a terminal rendezvous of a spacecraft with a passive target in circular orbit around the earth. The thrust angle versus time profile for the continuous-thrust, constant-acceleration maneuver is derived, based on the assumption that the components of inertial acceleration due to relative position and velocity are negligible on account of the close proximity between the two spacecraft. The control law is obtained as a ''bilinear tangent law'' and an analytic solution to the state differential equations is obtained by expanding a portion of the integrand as an infinite series in time. A differential corrector method is proposed, to obtain real-time updates to the guidance parameters at regular time intervals. Simulation of the guidance scheme is carried out using the Clohessy-Wiltshire equations of relative motion as well as the inverse-square two-body equations of motion. Results for typical examples are presented.
Resumo:
Complexes [Ru2O(O2CR)(2)(1-MeIm)(6)](ClO4)(2) (la-c), [Ru2O(O2CR)(2)(ImH)(6)](ClO4)(2) (2a,b), and [Ru2O(O2CR)(2)(4-MeImH)(6)](ClO4)(2) (3a,b) with a (mu-oxo)bis(mu-carboxylato)diruthenium(III) core have been prepared by reacting Ru2Cl(O2CR)(4) with the corresponding imidazole base, viz. 1-methylimidazole (1-MeIm), imidazole (ImH), and 4-methylimidazole (4-MeImH) in methanol, followed by treatment with NaClO4 in water (R: Me, a; C6H4-p-OMe, b; C6H4-p-Me, c). Diruthenium(III,IV) complexes [Ru2O(O2CR)(2)(1-MeIm)(6)](ClO4)(3) (R: Me, 4a; C6H4-p-OMe, 4b; C6H4-p-Me, 4c) have been prepared by one-electron oxidation of 1 in MeCN with K2S2O8 in water. Complexes la, 2a . 3H(2)O, and 4a . 1.5H(2)O have been structurally characterized. Crystal data for the complexes are as follows: la, orthorhombic, P2(1)2(1)2(1), a = 7.659(3) Angstrom, b = 22.366(3) Angstrom, c = 23.688(2) Angstrom, V = 4058(2) Angstrom(3), Z = 4, R = 0.0475, and R-w = 0.0467 for 2669 reflections with F-o > 2 sigma(F-o); 2a . 3H(2)O, triclinic,
, a = 13.735(3) Angstrom, b = 14.428(4) Angstrom, c = 20.515(8) Angstrom, alpha = 87.13(3)degrees, beta = 87.61(3)degrees, gamma = 63.92(2)degrees, V = 3646(2) Angstrom(3), Z = 4, R = 0.0485 and R-w = 0.0583 for 10 594 reflections with F-o > 6 sigma(F-o); 4a . 1.5H(2)O triclinic,
, a = 11.969(3) Angstrom, b = 12.090(6) Angstrom, c = 17.421(3) Angstrom, alpha = 108.93(2)degrees, beta = 84.42(2)degrees, gamma = 105.97(2)degrees, V = 2292(1) Angstrom(3), Z = 2, R = 0.0567, and R-w = 0.0705 for 6775 reflections with F-o > 6 sigma(F-o). The complexes have a diruthenium unit held by an oxo and two carboxylate ligands, and the imidazole ligands occupy the terminal sites of the core. The Ru-Ru distance and the Ru-O-oxo-Ru angle in la and 2a . 3H(2)O are 3.266(1), 3.272(1) Angstrom and 122.4(4), 120.5(2)degrees, while in 4a . 1.5H(2)O these values are 3.327(1) Angstrom and 133.6(2)degrees. The diruthenium(III) complexes 1-3 are blue in color and they exhibit an intense visible band in the range 560-575 nm. The absorption is charge transfer in nature involving the Ru(III)-d pi and O-oxo-p pi orbitals. The diruthenium(III,IV) complexes are red in color and show an intense band near 500 nm. The diruthenium(III) core readily gets oxidized with K2S2O8 forming quantitatively the diruthenium(III,IV) complex. The visible spectral record of the conversion shows an isosbestic point at 545 nm for 1 and at 535 nm for 2 and 3. Protonation of the oxide bridge by HClO4 in methanol yields the [Ru-2(mu-OH)(mu-O2CR)(2)](3+) core. The hydroxo species shows a visible band al 550 nm. The pK(a) value for la is 2.45. The protonated species are unstable. The 1-MeIm species converts to the diruthenium(III,IV) core, while the imidazole complex converts to [Ru(ImH)(6)](3+) and some uncharacterized products. Complex [Ru(ImH)(6)](ClO4)(3) has been structurally characterized. The diruthenium(III) complexes are essentially diamagnetic and show characteristic H-1 NMR spectra indicating the presence of the dimeric structure in solution. The diruthenium(III,IV) complexes are paramagnetic and display rhombic EPR spectral features. Complexes 1-3 are redox active. Complex 1 shows the one-electron reversible Ru-2(III)/(RuRuIV)-Ru-III, one-electron quasireversible (RuRuIV)-Ru-III/Ru-2(IV), and two-electron quasireversible Ru-2(III)/Ru-2(II) couples near 0.4, 1.5, and -1.0 V vs SCE In MeCN-0.1 M TBAP, respectively, in the cyclic and differential pulse voltammetric studies. Complexes 2 and 3 exhibit only reversible Ru-2(III)/(RuRuIV)-Ru-III and the quasireversible (RuRuIV)-Ru-III/Ru-2(IV) couples near 0.4 and 1.6 V vs SCE, respectively, The observation of a quasireversible one-step two-electron transfer reduction process in 1 is significant considering its relevance to the rapid and reversible Fe-2(III)/Fe-2(II) redox process known for the tribridged diiron core in the oxy and deoxy forms of hemerythrin.
Resumo:
DNA obtained from a human sputum isolate of Mycobacterium tuberculosis, NTI-64719, which showed extensive dissemination in the guinea pig model resulting in a high score for virulence was used to construct an expression library in the lambda ZAP vector. The size of DNA inserts in the library ranged from 1 to 3 kb, and recombinants represented 60% of the total plaques obtained. When probed with pooled serum from chronically infected tuberculosis patients, the library yielded 176 recombinants with a range of signal intensities. Among these, 93 recombinants were classified into 12 groups on the basis of DNA hybridization experiments, The polypeptides synthesized by the recombinants were predominantly LacZ fusion proteins, Serum obtained from patients who were clinically diagnosed to be in the early phase of M. tuberculosis infection was used to probe the 176 recombinants obtained. interestingly, some recombinants that gave very strong signals in the original screen did not react with early-phase serum; conversely, others whose signals were extremely weak in the original screen gave very intense signals with serum from recently infected patients, This indicates the differential nature of either the expression of these antigens or the immune response elicited by them as a function of disease progression.
Resumo:
Hydroxo-bridged homo- and hetero-trinuclear cobalt(III) complexes of the type [MII(H2O)2{(OH)2CoIII(N4)}2]X2·nH2O [MII= a divalent metal ion such as CoII, NiII or ZnII; N4=(en)2(en = ethane-1,2-diamine) or (NH3)4; X = SO4 or (ClO4)2; n= 3 or 5] have been prepared and spectroscopically characterized. The structure of [Cu{(OH)2Co(en)2}2][SO4]2·2H2O 1 has been determined. The geometry around copper atom is a pseudo-square-based pyramid, with the basal sites occupied by four bridging hydroxide oxygens and the apical site is occupied by a weakly co-ordinated sulfate anion [Cu–O 2.516(4)Å]. The hydroxo groups bridge pairs of cobalt(III) ions which are in near-octahedral environments. The ethylenediamine chelate rings have the twist conformation. In the crystal structure of [Cu{(OH)2Co(en)2}2][ClO4]4·2H2O 2 the perchlorate ion is not co-ordinated and the en ligands have envelope conformations. The sulfate ion in [Cu{(OH)2Co(NH3)4}2][SO4]2·4H2O 3 is not co-ordinated to the central copper ion. Electronic, infrared and variable-temperature EPR spectral data are discussed.
Resumo:
The monohydrate of the protected amino-terminal pentapeptide of suzukacillin, t-butoxycarbonyl--aminoisobutyryl-L-prolyl-L-valyl--aminoisobutyryl-L-valine methyl ester, C29H51N5O8, crystallizes in the orthorhombic space group P212121 with a= 10.192, b= 10.440, c= 32.959 Å, and Z= 4. The structure has been solved by direct methods and refined to an R value of 0.101 for 1 827 observed reflections. The molecule exists as a four-fold helix with a pitch of 5.58 Å. The helix is stabilised by N–H O hydrogen bonds, two of the 51 type (corresponding to the -helix) and the third of the 41 type (310 helix). The carbonyl oxygen of the amino-protecting group accepts two hydrogen bonds, one each from the amide NH groups of the third (41) and fourth (51) residues. The remaining 51 hydrogen bond is between the two terminal residues. The lone water molecule in the structure is hydrogen bonded to carbonyl oxygens of the prolyl residue in one molecule and the non-terminal valyl residue in a symmetry-related molecule.
Resumo:
The reactions of terminal borylene complexes of the type [CpFe(CO)(2)(BNR2)](+) (R = `Pr, Cy) with heteroallenes have been investigated by quantum-chemical methods, in an attempt to explain the experimentally observed product distributions. Reaction with dicyclohexylcarbodiimide (CyNCNCy) gives a bis-insertion product, in which 1 equiv of carbodiimide is assimilated into each of the Fe=B and B=N double bonds to form a spirocyclic boronium system. In contrast, isocyanates (R'NCO, R' = Ph, 2,6-wXy1, CY; XYl = C6H3Me2) react to give isonitrile complexes of the type [CpFe(CO)(2)(CNR')]+, via a net oxygen abstraction (or formal metathesis) process. Both carbodiimide and socyanate substrates are shown to prefer initial attack at the Fe=B bond rather than the B=N bond of the borylene complex. Further mechanistic studies reveal that the carbodiimide reaction ultimately leads to the bis-insertion compounds [CpFe(CO)(2)C(NCy)(2)B(NCY)(2)CNR2](+), rather than to the isonitrile system [CpFe(CO)(2)(CNCy)](+), on the basis of both thermodynamic (product stability) and kinetic considerations (barrier heights). The mechanism of the initial carbodiimide insertion process is unusual in that it involves coordination of the substrate at the (borylene) ligand followed by migration of the metal fragment, rather than a more conventional process: i.e., coordination of the unsaturated substrate at the metal followed by ligand migration. In the case of isocyanate substrates, metathesis products are competitive with those from the insertion pathway. Direct, single-step metathesis reactivity to give products containing a coordinated isonitrile ligand (i.e. [CpFe(CO)(2)(CNR')](+)) is facile if initial coordination of the isocyanate at boron occurs via the oxygen donor (which is kinetically favored); insertion chemistry is feasible when the isocyanate attacks initially via the nitrogen atom. However, even in the latter case, further reaction of the monoinsertion product so formed with excess isocyanate offers a number of facile (low energetic barrier) routes which also generate ['CpFe(CO)(2)(CNR')](+), rather than the bis-insertion product [CpFe(CO)(2)C(NR')(O)B(NR')(O)CNR2](+) (i.e., the direct analogue of the observed products in the carbodiimide reaction).
Resumo:
A simple four-terminal AC bridge is described which can be used with germanium resistance thermometers down to 1 K. The special features of the bridge are its ease of fabrication and extremely low cost.
Resumo:
The amino terminal suzukacillin decapeptide fragment, Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aitbh-eO Me, two pentapeptides Boc-AibPrc-Val-AibVal-OMe and Boc-Ala-AibAla-AibAibOMe, and the tripeptide Boc-Ala-AibAibOMe have been studied by 270-MHz 'H NMR spectroscopy. By use of solvent dependence of chemical shifts in a CDC13-(CD3),S0 system and temperature dependence of amide NH chemical shifts in (CD3),S0, the intramolecularly hydrogen bonded NH groups in these peptides have been identified. The tripeptide possesses one hydrogen bond, both pentapeptides show evidence for three intramolecular hydrogen bonds, and the decapeptide has eight NH groups participating in hydrogen bonding. An Ala( 1)-Aib(2) @ turn is proposed for the tripeptide. Both pentapeptides favor 310 helical conformations composed of three consecutive B turns. The decapeptide adopts a 310 helical conformation with some flexibility at the Va1(5)-Ala(6) segment. The proposed conformations are consistent with the known stereochemical preferences of Aib residues.
Resumo:
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.
Resumo:
The molecular structure of N-benzyloxycarbonyl-α-aminoisobutyryl-prolyl-α-aminoisobutyryl-alanyl methyl ester (Z-Aib-Pro-Aib-Ala-OMe), the amino terminal tetrapeptide of alamethicin is reported. The molecule contains two consecutive β-turns with Aib-Pro and Pro-Aib at the corners, forming an incipient 310 helix. This constitutes the first example of an X2-Pro3 β-turn in the crystal structure of a small peptide.
Resumo:
The 3prime terminal 1255nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3prime terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.
Resumo:
The mutL gene of Neisseria gonorrhoeae has been cloned and the gene product purified. We have found that the homodimeric N. gonorrhoeae MutL (NgoL) protein displays an endonuclease activity that incises covalently closed circular DNA in the presence of Mn2+, Mg2+ or Ca2+ ions, unlike human MutL alpha which shows endonuclease activity only in the presence of Mn2+. We report in the present paper that the C-terminal domain of N. gonorrhoeae MutL (NgoL-CTD) consisting of amino acids 460-658 exhibits Mn2+-dependent endonuclease activity. Sedimentation velocity, sedimentation equilibrium and dynamic light scattering experiments show NgoL-CTD to be a dimer. The probable endonucleolytic active site is localized to a metal-binding motif, DMHAX(2)EX(4)E, and the nicking endonuclease activity is dependent on the integrity of this motif. By in vitro comparison of wild-type and it mutant NgoL-CTD protein, we show that the latter protein exhibits highly reduced endonuclease activity. We therefore suggest that the mode of excision initiation in DNA mismatch repair may be different in organisms that lack MutH protein, but have MutL proteins that harbour the D[M/Q]HAX(2)EX(4)E motif.
Resumo:
P>Multicellular development in the social amoeba Dictyostelium discoideum is triggered by starvation. It involves a series of morphogenetic movements, among them being the rising of the spore mass to the tip of the stalk. The process requires precise coordination between two distinct cell types-presumptive (pre-) spore cells and presumptive (pre-) stalk cells. Trishanku (triA) is a gene expressed in prespore cells that is required for normal morphogenesis. The triA- mutant shows pleiotropic effects that include an inability of the spore mass to go all the way to the top. We have examined the cellular behavior required for the normal ascent of the spore mass. Grafting and mixing experiments carried out with tissue fragments and cells show that the upper cup, a tissue that derives from prestalk cells and anterior-like cells (ALCs), does not develop properly in a triA- background. A mutant upper cup is unable to lift the spore mass to the top of the fruiting body, likely due to defective intercellular adhesion. If wild-type upper cup function is provided by prestalk and ALCs, trishanku spores ascend all the way. Conversely, Ax2 spores fail to do so in chimeras in which the upper cup is largely made up of mutant cells. Besides proving that under these conditions the wild-type phenotype of the upper cup is necessary and sufficient for terminal morphogenesis in D. discoideum, this study provides novel insights into developmental and evolutionary aspects of morphogenesis in general. Genes that are active exclusively in one cell type can elicit behavior in a second cell type that enhances the reproductive fitness of the first cell type, thereby showing that morphogenesis is a cooperative process.
Resumo:
The genome of the human pathogen Entamoeba histolytica, a primitive protist, contains non-long terminal repeat retrotransposable elements called EhLINEs. These encode reverse transcriptase and endonuclease required for retrotransposition. The endonuclease shows sequence similarity with bacterial restriction endonucleases. Here we report the salient enzymatic features of one such endonuclease. The kinetics of an EhLINE1-encoded endonuclease catalyzed reaction, determined under steady-state and single-turnover conditions, revealed a significant burst phase followed by a slower steady-state phase, indicating that release of product could be the slower step in this reaction. For circular supercoiled DNA the K-m was 2.6 x 10-8 m and the k(cat) was 1.6 x 10-2 sec-1. For linear E. histolytica DNA substrate the K-m and k(cat) values were 1.3 x 10-8 m and 2.2 x 10-4 sec-1 respectively. Single-turnover reaction kinetics suggested a noncooperative mode of hydrolysis. The enzyme behaved as a monomer. While Mg2+ was required for activity, 60% activity was seen with Mn2+ and none with other divalent metal ions. Substitution of PDX12-14D (a metal-binding motif) with PAX(12-14)D caused local conformational change in the protein tertiary structure, which could contribute to reduced enzyme activity in the mutated protein. The protein underwent conformational change upon the addition of DNA, which is consistent with the known behavior of restriction endonucleases. The similarities with bacterial restriction endonucleases suggest that the EhLINE1-encoded endonuclease was possibly acquired from bacteria through horizontal gene transfer. The loss of strict sequence specificity for nicking may have been subsequently selected to facilitate spread of the retrotransposon to intergenic regions of the E. histolytica genome.
Resumo:
We examined whether C-terminal residues of soluble recombinant FtsZ of Mycobacterium tuberculosis (MtFtsZ) have any role in MtFtsZ polymerization in vitro. MtFtsZ-delta C1, which lacks C-terminal extreme Arg residue (underlined in the C-terminal extreme stretch of 13 residues, DDDDVDVPPFMRR), but retaining the penultimate Arg residue (DDDDVDVPPFMR), polymerizes like full-length MtFtsZ in vitro. However, MtFtsZ-delta C2 that lacks both the Arg residues at the C-terminus (DDDDVDVPPFM), neither polymerizes at pH 6.5 nor forms even single- or double-stranded filaments at pH 7.7 in the presence of 10 mM CaCl2. Neither replacement of the penultimate Arg residue, in the C-terminal Arg deletion mutant DDDDVDVPPFMR, with Lys or His or Ala or Asp (DDDDVDVPPFMK/H/A/D) enabled polymerization. Although MtFtsZ-delta C2 showed secondary and tertiary structural changes, which might have affected polymerization, GTPase activity of MtFtsZ-delta C2 was comparable to that of MtFtsZ. These data suggest that MtFtsZ requires an Arg residue as the extreme C-terminal residue for polymerization in vitro. The polypeptide segment containing C-terminal 67 residues, whose coordinates were absent from MtFtsZ crystal structure, was modeled on tubulin and MtFtsZ dimers. Possibilities for the influence of the C-terminal Arg residues on the stability of the dimer and thereby on MtFtsZ polymerization have been discussed.