3 resultados para teorema Weierstrass serie Fejer

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide some conditions for the graph of a Holder-continuous function on (D) over bar, where (D) over bar is a closed disk in C, to be polynomially convex. Almost all sufficient conditions known to date - provided the function (say F) is smooth - arise from versions of the Weierstrass Approximation Theorem on (D) over bar. These conditions often fail to yield any conclusion if rank(R)DF is not maximal on a sufficiently large subset of (D) over bar. We bypass this difficulty by introducing a technique that relies on the interplay of certain plurisubharmonic functions. This technique also allows us to make some observations on the polynomial hull of a graph in C(2) at an isolated complex tangency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nano-indentation is a technique used to measure various mechanical properties like hardness, Young's modulus and the adherence of thin films and surface layers. It can be used as a quality control tool for various surface modification techniques like ion-implantation, film deposition processes etc. It is important to characterise the increasing scatter in the data measured at lower penetration depths observed in the nano-indentation, for the technique to be effectively applied. Surface roughness is one of the parameters contributing for the scatter. This paper is aimed at quantifying the nature and the amount of scatter that will be introduced in the measurement due to the roughness of the surface on which the indentation is carried out. For this the surface is simulated using the Weierstrass-Mandelbrot function which gives a self-affine fractal. The contact area of this surface with a conical indenter with a spherical cap at the tip is measured numerically. The indentation process is simulated using the spherical cavity model. This eliminates the indentation size effect observed at the micron and sub-micron scales. It has been observed that there exists a definite penetration depth in relation to the surface roughness beyond which the scatter is reduced such that reliable data could be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a need to use probability distributions with power-law decaying tails to describe the large variations exhibited by some of the physical phenomena. The Weierstrass Random Walk (WRW) shows promise for modeling such phenomena. The theory of anomalous diffusion is now well established. It has found number of applications in Physics, Chemistry and Biology. However, its applications are limited in structural mechanics in general, and structural engineering in particular. The aim of this paper is to present some mathematical preliminaries related to WRW that would help in possible applications. In the limiting case, it represents a diffusion process whose evolution is governed by a fractional partial differential equation. Three applications of superdiffusion processes in mechanics, illustrating their effectiveness in handling large variations, are presented.