245 resultados para temporal pulse shape
em Indian Institute of Science - Bangalore - Índia
Resumo:
Controlled waveform magnets (CWMs) are a class of pulsed magnets whose pulse shape with time can be programmed by the user. With a CWM, the user gains control not only over the magnitude of the field but also over its rate of change. In this work we present a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 tesla. Insulated gate bipolar transistor chips have been paralleled to form the high current switch and paralleled chips of SiC Schottky diodes form the crowbar diode module. Sample controlled waveforms including flat-tops up to 10 tesla and some triangular magnetic field pulses have been successfully generated for 10-20 ms with a ripple < 1%. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3699316]
Resumo:
Photoacoustic/thermoacoustic tomography is an emerging hybrid imaging modality combining optical/microwave imaging with ultrasound imaging. Here, a k-wave MATLAB toolbox was used to simulate various configurations of excitation pulse shape, width, transducer types, and target object sizes to see their effect on the photoacoustic/thermoacoustic signals. A numerical blood vessel phantom was also used to demonstrate the effect of various excitation pulse waveforms and pulse widths on the reconstructed images. Reconstructed images were blurred due to the broadening of the pressure waves by the excitation pulse width as well as by the limited transducer bandwidth. The blurring increases with increase in pulse width. A deconvolution approach is presented here with Tikhonov regularization to correct the photoacoustic/thermoacoustic signals, which resulted in improved reconstructed images by reducing the blurring effect. It is observed that the reconstructed images remain unaffected by change in pulse widths or pulse shapes, as well as by the limited bandwidth of the ultrasound detectors after the use of the deconvolution technique. (C) 2013 Optical Society of America
Resumo:
The theory of transient mode locking for an active modulator in an intracavity frequency-doubled laser is presented. The theory is applied to mode-locked and intracavity frequency-doubled Nd:YAG laser and the mode-locked pulse width is plotted as a function of number of round trips inside the cavity. It is found that the pulse compression is faster and the system takes a very short time to approach the steady state in the presence of a second harmonic generating crystal inside the laser cavity. The effect of modulation depth and the second harmonic conversion efficiency on the temporal behavior of the pulse width is discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
The theory of transient mode locking for an active modulator in an intracavity frequency-doubled laser is presented. The theory is applied to mode-locked and intracavity frequency-doubled Nd:YAG laser and the mode-locked pulse width is plotted as a function of number of round trips inside the cavity. It is found that the pulse compression is faster and the system takes a very short time to approach the steady state in the presence of a second harmonic generating crystal inside the laser cavity. The effect of modulation depth and the second harmonic conversion efficiency on the temporal behavior of the pulse width is discussed.
Resumo:
We employ a fluctuation-based technique to investigate the athermal component associated with martensite phase transition, which is a prototype of temperature-driven structural transformation. Statistically, when the phase transition is purely athermal, we find that the temporal sequence of avalanches under constant drive is insensitive to the drive rate. We have used fluctuations in electrical resistivity or noise in nickel titanium shape memory alloys in three different forms: a thin film exhibiting well-defined transition temperatures,a highly disordered film, and a bulk wire of rectangular cross-section. Noise is studied in the realm of dynamic transition,viz.while the temperature is being ramped, which probes into the kinetics of the transformation at real time scales,and could probably stand out as a promising tool for material testing in various other systems, including nanoscale devices.
Resumo:
A new approach for unwrapping phase maps, obtained during the measurement of 3-D surfaces using sinusoidal structured light projection technique, is proposed. "Takeda's method" is used to obtain the wrapped phase map. Proposed method of unwrapping makes use of an additional image of the object captured under the illumination of a specifically designed color-coded pattern. The new approach demonstrates, for the first time, a method of producing reliable unwrapping of objects even with surface discontinuities from a single-phase map. It is shown to be significantly faster and reliable than temporal phase unwrapping procedure that uses a complete exponential sequence. For example, if a measurement with the accuracy obtained by interrogating the object with S fringes in the projected pattern is carried out with both the methods, new method requires only 2 frames as compared to (log(2)S +1) frames required by the later method.
Resumo:
A simple technique for the measurement of the beam shape parameters of pulsed lasers, with just a single pulse of the laser is described. It involves the use of several beam dividers inclined at very small angles to the beam axis, reflecting the beam back to a screen or a phosphor placed near the exit of the laser. The reflected images are then photographed by a camera to yield the beam parameters.
Resumo:
In the present work, the spray structure of diesel from a 200-mu m, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean `Diameter (SMD) is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.
Resumo:
Acoustic feature based speech (syllable) rate estimation and syllable nuclei detection are important problems in automatic speech recognition (ASR), computer assisted language learning (CALL) and fluency analysis. A typical solution for both the problems consists of two stages. The first stage involves computing a short-time feature contour such that most of the peaks of the contour correspond to the syllabic nuclei. In the second stage, the peaks corresponding to the syllable nuclei are detected. In this work, instead of the peak detection, we perform a mode-shape classification, which is formulated as a supervised binary classification problem - mode-shapes representing the syllabic nuclei as one class and remaining as the other. We use the temporal correlation and selected sub-band correlation (TCSSBC) feature contour and the mode-shapes in the TCSSBC feature contour are converted into a set of feature vectors using an interpolation technique. A support vector machine classifier is used for the classification. Experiments are performed separately using Switchboard, TIMIT and CTIMIT corpora in a five-fold cross validation setup. The average correlation coefficients for the syllable rate estimation turn out to be 0.6761, 0.6928 and 0.3604 for three corpora respectively, which outperform those obtained by the best of the existing peak detection techniques. Similarly, the average F-scores (syllable level) for the syllable nuclei detection are 0.8917, 0.8200 and 0.7637 for three corpora respectively. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Small-angle neutron scattering (SANS) measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(3)-N+ (CH3)(2)C16H33 2Br(-) dimeric surfactant, referred to as 16-3-16, at different concentrations and temperatures, are reported. It is seen that micelles are disc-like for concentrations C = 2.5 and 10 mM at temperature T = 30 degrees C. At low concentration C = 0.5 mM micelles are rod-like. Similarly, there is a disc to rod-like transition of micelles on increasing the temperature. For C = 2.5 mM, micelles are rod-like at T = 45 and 70 degrees C.
Resumo:
We present two six-parameter families of anisotropic Gaussian Schell-model beams that propagate in a shape-invariant manner, with the intensity distribution continuously twisting about the beam axis. The two families differ in the sense or helicity of this beam twist. The propagation characteristics of these shape-invariant beams are studied, and the restrictions on the beam parameters that arise from the optical uncertainty principle are brought out. Shape invariance is traced to a fundamental dynamical symmetry that underlies these beams. This symmetry is the product of spatial rotation and fractional Fourier transformation.
Resumo:
Doppler weather radars with fast scanning rates must estimate spectral moments based on a small number of echo samples. This paper concerns the estimation of mean Doppler velocity in a coherent radar using a short complex time series. Specific results are presented based on 16 samples. A wide range of signal-to-noise ratios are considered, and attention is given to ease of implementation. It is shown that FFT estimators fare poorly in low SNR and/or high spectrum-width situations. Several variants of a vector pulse-pair processor are postulated and an algorithm is developed for the resolution of phase angle ambiguity. This processor is found to be better than conventional processors at very low SNR values. A feasible approximation to the maximum entropy estimator is derived as well as a technique utilizing the maximization of the periodogram. It is found that a vector pulse-pair processor operating with four lags for clear air observation and a single lag (pulse-pair mode) for storm observation may be a good way to estimate Doppler velocities over the entire gamut of weather phenomena.
Resumo:
In this work, we theoretically examine recent pump/probe photoemission experiments on the strongly correlated charge-density-wave insulator TaS2.We describe the general nonequilibrium many-body formulation of time-resolved photoemission in the sudden approximation, and then solve the problem using dynamical mean-field theory with the numerical renormalization group and a bare density of states calculated from density functional theory including the charge-density-wave distortion of the ion cores and spin-orbit coupling. We find a number of interesting results: (i) the bare band structure actually has more dispersion in the perpendicular direction than in the two-dimensional planes; (ii) the DMFT approach can produce upper and lower Hubbard bands that resemble those in the experiment, but the upper bands will overlap in energy with other higher energy bands; (iii) the effect of the finite width of the probe pulse is minimal on the shape of the photoemission spectra; and (iv) the quasiequilibrium approximation does not fully describe the behavior in this system.
Resumo:
A comparison is made of the performance of a weather Doppler radar with a staggered pulse repetition time and a radar with a random (but known) phase. As a standard for this comparison, the specifications of the forthcoming next generation weather radar (NEXRAD) are used. A statistical analysis of the spectral momentestimates for the staggered scheme is developed, and a theoretical expression for the signal-to-noise ratio due to recohering-filteringrecohering for the random phase radar is obtained. Algorithms for assignment of correct ranges to pertinent spectral moments for both techniques are presented.
Resumo:
Conventionally two-dimensional NMR spectra are recorded in the absolute-intensity mode (1-4). It has recently been demonstrated that absorption-mode 2D spectra have much higher resolution and are the preferred mode of presentation, especially for 2D spectra of biomolecules (5-7). Indeed, any experimental scheme which yields phasemixed lineshapes is subject to modification to yield pure-phase spectra, even at the expense of intensity and anomalous multiplet structure (8-10). For this purpose two types of filters are already known: the z filter (9, 20) and the purging pulse (8, 10). In this note, we propose a 45” pulse pair as a filter for obtaining pure-phase 2D spectra, mainly for experiments in which the above filters do not yield pure-phase spectra.