148 resultados para temporal logic programming

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A framework based on the notion of "conflict-tolerance" was proposed in as a compositional methodology for developing and reasoning about systems that comprise multiple independent controllers. A central notion in this framework is that of a "conflict-tolerant" specification for a controller. In this work we propose a way of defining conflict-tolerant real-time specifications in Metric Interval Temporal Logic (MITL). We call our logic CT-MITL for Conflict-Tolerant MITL. We then give a clock optimal "delay-then-extend" construction for building a timed transition system for monitoring past-MITL formulas. We show how this monitoring transition system can be used to solve the associated verification and synthesis problems for CT-MITL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various logical formalisms with the freeze quantifier have been recently considered to model computer systems even though this is a powerful mechanism that often leads to undecidability. In this paper, we study a linear-time temporal logic with past-time operators such that the freeze operator is only used to express that some value from an infinite set is repeated in the future or in the past. Such a restriction has been inspired by a recent work on spatio-temporal logics. We show decidability of finitary and infinitary satisfiability by reduction into the verification of temporal properties in Petri nets. This is a surprising result since the logic is closed under negation, contains future-time and past-time temporal operators and can express the nonce property and its negation. These ingredients are known to lead to undecidability with a more liberal use of the freeze quantifier.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Satisfiability algorithms for propositional logic have improved enormously in recently years. This improvement increases the attractiveness of satisfiability methods for first-order logic that reduce the problem to a series of ground-level satisfiability problems. R. Jeroslow introduced a partial instantiation method of this kind that differs radically from the standard resolution-based methods. This paper lays the theoretical groundwork for an extension of his method that is general enough and efficient enough for general logic programming with indefinite clauses. In particular we improve Jeroslow's approach by (1) extending it to logic with functions, (2) accelerating it through the use of satisfiers, as introduced by Gallo and Rago, and (3) simplifying it to obtain further speedup. We provide a similar development for a "dual" partial instantiation approach defined by Hooker and suggest a primal-dual strategy. We prove correctness of the primal and dual algorithms for full first-order logic with functions, as well as termination on unsatisfiable formulas. We also report some preliminary computational results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Various logical formalisms with the freeze quantifier have been recently considered to model computer systems even though this is a powerful mechanism that often leads to undecidability. In this article, we study a linear-time temporal logic with past-time operators such that the freeze operator is only used to express that some value from an infinite set is repeated in the future or in the past. Such a restriction has been inspired by a recent work on spatio-temporal logics that suggests such a restricted use of the freeze operator. We show decidability of finitary and infinitary satisfiability by reduction into the verification of temporal properties in Petri nets by proposing a symbolic representation of models. This is a quite surprising result in view of the expressive power of the logic since the logic is closed under negation, contains future-time and past-time temporal operators and can express the nonce property and its negation. These ingredients are known to lead to undecidability with a more liberal use of the freeze quantifier. The article also contains developments about the relationships between temporal logics with the freeze operator and counter automata as well as reductions into first-order logics over data words.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We extend some of the classical connections between automata and logic due to Büchi (1960) [5] and McNaughton and Papert (1971) [12] to languages of finitely varying functions or “signals”. In particular, we introduce a natural class of automata for generating finitely varying functions called View the MathML source’s, and show that it coincides in terms of language definability with a natural monadic second-order logic interpreted over finitely varying functions Rabinovich (2002) [15]. We also identify a “counter-free” subclass of View the MathML source’s which characterise the first-order definable languages of finitely varying functions. Our proofs mainly factor through the classical results for word languages. These results have applications in automata characterisations for continuously interpreted real-time logics like Metric Temporal Logic (MTL) Chevalier et al. (2006, 2007) [6] and [7].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gauss and Fourier have together provided us with the essential techniques for symbolic computation with linear arithmetic constraints over the reals and the rationals. These variable elimination techniques for linear constraints have particular significance in the context of constraint logic programming languages that have been developed in recent years. Variable elimination in linear equations (Guassian Elimination) is a fundamental technique in computational linear algebra and is therefore quite familiar to most of us. Elimination in linear inequalities (Fourier Elimination), on the other hand, is intimately related to polyhedral theory and aspects of linear programming that are not quite as familiar. In addition, the high complexity of elimination in inequalities has forces the consideration of intricate specializations of Fourier's original method. The intent of this survey article is to acquaint the reader with these connections and developments. The latter part of the article dwells on the thesis that variable elimination in linear constraints over the reals extends quite naturally to constraints in certain discrete domains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a compiler for the Flat Concurrent Prolog language on a message passing multiprocessor architecture. This compiler permits symbolic and declarative programming in the syntax of Guarded Horn Rules, The implementation has been verified and tested on the 64-node PARAM parallel computer developed by C-DAC (Centre for the Development of Advanced Computing, India), Flat Concurrent Prolog (FCP) is a logic programming language designed for concurrent programming and parallel execution, It is a process oriented language, which embodies dataflow synchronization and guarded-command as its basic control mechanisms. An identical algorithm is executed on every processor in the network, We assume regular network topologies like mesh, ring, etc, Each node has a local memory, The algorithm comprises of two important parts: reduction and communication, The most difficult task is to integrate the solutions of problems that arise in the implementation in a coherent and efficient manner. We have tested the efficacy of the compiler on various benchmark problems of the ICOT project that have been reported in the recent book by Evan Tick, These problems include Quicksort, 8-queens, and Prime Number Generation, The results of the preliminary tests are favourable, We are currently examining issues like indexing and load balancing to further optimize our compiler.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crop type classification using remote sensing data plays a vital role in planning cultivation activities and for optimal usage of the available fertile land. Thus a reliable and precise classification of agricultural crops can help improve agricultural productivity. Hence in this paper a gene expression programming based fuzzy logic approach for multiclass crop classification using Multispectral satellite image is proposed. The purpose of this work is to utilize the optimization capabilities of GEP for tuning the fuzzy membership functions. The capabilities of GEP as a classifier is also studied. The proposed method is compared to Bayesian and Maximum likelihood classifier in terms of performance evaluation. From the results we can conclude that the proposed method is effective for classification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal lagoons are complex ecosystems exhibiting a high degree of non-linearity in the distribution and exchange of nutrients dissolved in the water column due to their spatio-temporal characteristics. This factor has a direct influence on the concentrations of chlorophyll-a, an indicator of the primary productivity in the water bodies as lakes and lagoons. Moreover the seasonal variability in the characteristics of large-scale basins further contributes to the uncertainties in the data on the physico-chemical and biological characteristics of the lagoons. Considering the above, modelling the distributions of the nutrients with respect to the chlorophyll-concentrations, hence requires an effective approach which will appropriately account for the non-linearity of the ecosystem as well as the uncertainties in the available data. In the present investigation, fuzzy logic was used to develop a new model of the primary production for Pulicat lagoon, Southeast coast of India. Multiple regression analysis revealed that the concentrations of chlorophyll-a in the lagoon was highly influenced by the dissolved concentrations of nitrate, nitrites and phosphorous to different extents over different seasons and years. A high degree of agreement was obtained between the actual field values and those predicted by the new fuzzy model (d = 0.881 to 0.788) for the years 2005 and 2006, illustrating the efficiency of the model in predicting the values of chlorophyll-a in the lagoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining the philosophies of nonlinear model predictive control and approximate dynamic programming, a new suboptimal control design technique is presented in this paper, named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints. This technique is computationally efficient, and hence, can possibly be implemented online. The effectiveness of the proposed method is demonstrated by designing an ascent phase guidance scheme for a ballistic missile propelled by solid motors. A comparison study with a conventional gradient method shows that the MPSP solution is quite close to the optimal solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research in modelling uncertainty in water resource systems has highlighted the use of fuzzy logic-based approaches. A number of research contributions exist in the literature that deal with uncertainty in water resource systems including fuzziness, subjectivity, imprecision and lack of adequate data. This chapter presents a broad overview of the fuzzy logic-based approaches adopted in addressing uncertainty in water resource systems modelling. Applications of fuzzy rule-based systems and fuzzy optimisation are then discussed. Perspectives on the scope for further research are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the programming an FPGA (Field Programmable Gate Array) to emulate the dynamics of DC machines. FPGA allows high speed real time simulation with high precision. The described design includes block diagram representation of DC machine, which contain all arithmetic and logical operations. The real time simulation of the machine in FPGA is controlled by user interfaces they are Keypad interface, LCD display on-line and digital to analog converter. This approach provides emulation of electrical machine by changing the parameters. Separately Exited DC machine implemented and experimental results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.