83 resultados para temporal compressive sensing ratio design
em Indian Institute of Science - Bangalore - Índia
Resumo:
Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.
Resumo:
Compressive Sensing (CS) is a new sensing paradigm which permits sampling of a signal at its intrinsic information rate which could be much lower than Nyquist rate, while guaranteeing good quality reconstruction for signals sparse in a linear transform domain. We explore the application of CS formulation to music signals. Since music signals comprise of both tonal and transient nature, we examine several transforms such as discrete cosine transform (DCT), discrete wavelet transform (DWT), Fourier basis and also non-orthogonal warped transforms to explore the effectiveness of CS theory and the reconstruction algorithms. We show that for a given sparsity level, DCT, overcomplete, and warped Fourier dictionaries result in better reconstruction, and warped Fourier dictionary gives perceptually better reconstruction. “MUSHRA” test results show that a moderate quality reconstruction is possible with about half the Nyquist sampling.
Resumo:
For compressive sensing, we endeavor to improve the atom selection strategy of the existing orthogonal matching pursuit (OMP) algorithm. To achieve a better estimate of the underlying support set progressively through iterations, we use a least squares solution based atom selection method. From a set of promising atoms, the choice of an atom is performed through a new method that uses orthogonal projection along-with a standard matched filter. Through experimental evaluations, the effect of projection based atom selection strategy is shown to provide a significant improvement for the support set recovery performance, in turn, the compressive sensing recovery.
Resumo:
In this paper, we present the design and characterization of a vibratory yaw rate MEMS sensor that uses in-plane motion for both actuation and sensing. The design criterion for the rate sensor is based on a high sensitivity and low bandwidth. The required sensitivity of the yawrate sensor is attained by using the inplane motion in which the dominant damping mechanism is the fluid loss due to slide film damping i.e. two-three orders of magnitude less than the squeeze-film damping in other rate sensors with out-of-plane motion. The low bandwidth is achieved by matching the drive and the sense mode frequencies. Based on these factors, the yaw rate sensor is designed and finally realized using surface micromachining. The inplane motion of the sensor is experimentally characterized to determine the sense and the drive mode frequencies, and corresponding damping ratios. It is found that the experimental results match well with the numerical and the analytical models with less than 5% error in frequencies measurements. The measured quality factor of the sensor is approximately 467, which is two orders of magnitude higher than that for a similar rate sensor with out-of-plane sense direction.
Resumo:
Wetlands are the most productive and biologically diverse but very fragile ecosystems. They are vulnerable to even small changes in their biotic and abiotic factors. In recent years, there has been concern over the continuous degradation of wetlands due to unplanned developmental activities. This necessitates inventorying, mapping, and monitoring of wetlands to implement sustainable management approaches. The principal objective of this work is to evolve a strategy to identify and monitor wetlands using temporal remote sensing (RS) data. Pattern classifiers were used to extract wetlands automatically from NIR bands of MODIS, Landsat MSS and Landsat TM remote sensing data. MODIS provided data for 2002 to 2007, while for 1973 and 1992 IR Bands of Landsat MSS and TM (79m and 30m spatial resolution) data were used. Principal components of IR bands of MODIS (250 m) were fused with IRS LISS-3 NIR (23.5 m). To extract wetlands, statistical unsupervised learning of IR bands for the respective temporal data was performed using Bayesian approach based on prior probability, mean and covariance. Temporal analysis of wetlands indicates a sharp decline of 58% in Greater Bangalore attributing to intense urbanization processes, evident from a 466% increase in built-up area from 1973 to 2007.
Resumo:
Urbanisation is the increase in the population of cities in proportion to the region's rural population. Urbanisation in India is very rapid with urban population growing at around 2.3 percent per annum. Urban sprawl refers to the dispersed development along highways or surrounding the city and in rural countryside with implications such as loss of agricultural land, open space and ecologically sensitive habitats. Sprawl is thus a pattern and pace of land use in which the rate of land consumed for urban purposes exceeds the rate of population growth resulting in an inefficient and consumptive use of land and its associated resources. This unprecedented urbanisation trend due to burgeoning population has posed serious challenges to the decision makers in the city planning and management process involving plethora of issues like infrastructure development, traffic congestion, and basic amenities (electricity, water, and sanitation), etc. In this context, to aid the decision makers in following the holistic approaches in the city and urban planning, the pattern, analysis, visualization of urban growth and its impact on natural resources has gained importance. This communication, analyses the urbanisation pattern and trends using temporal remote sensing data based on supervised learning using maximum likelihood estimation of multivariate normal density parameters and Bayesian classification approach. The technique is implemented for Greater Bangalore – one of the fastest growing city in the World, with Landsat data of 1973, 1992 and 2000, IRS LISS-3 data of 1999, 2006 and MODIS data of 2002 and 2007. The study shows that there has been a growth of 466% in urban areas of Greater Bangalore across 35 years (1973 to 2007). The study unravels the pattern of growth in Greater Bangalore and its implication on local climate and also on the natural resources, necessitating appropriate strategies for the sustainable management.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper considers the problem of identifying the footprints of communication of multiple transmitters in a given geographical area. To do this, a number of sensors are deployed at arbitrary but known locations in the area, and their individual decisions regarding the presence or absence of the transmitters' signal are combined at a fusion center to reconstruct the spatial spectral usage map. One straightforward scheme to construct this map is to query each of the sensors and cluster the sensors that detect the primary's signal. However, using the fact that a typical transmitter footprint map is a sparse image, two novel compressive sensing based schemes are proposed, which require significantly fewer number of transmissions compared to the querying scheme. A key feature of the proposed schemes is that the measurement matrix is constructed from a pseudo-random binary phase shift applied to the decision of each sensor prior to transmission. The measurement matrix is thus a binary ensemble which satisfies the restricted isometry property. The number of measurements needed for accurate footprint reconstruction is determined using compressive sampling theory. The three schemes are compared through simulations in terms of a performance measure that quantifies the accuracy of the reconstructed spatial spectral usage map. It is found that the proposed sparse reconstruction technique-based schemes significantly outperform the round-robin scheme.
Resumo:
The key problem tackled in this paper is the development of a stand-alone self-powered sensor to directly sense the spectrum of mechanical vibrations. Such a sensor could be deployed in wide area sensor networks to monitor structural vibrations of large machines (e. g. aircrafts) and initiate corrective action if the structure approaches resonance. In this paper, we study the feasibility of using stretched membranes of polymer piezoelectric polyvinlidene fluoride for low-frequency vibration spectrum sensing. We design and evaluate a low-frequency vibration spectrum sensor that accepts an incoming vibration and directly provides the spectrum of the vibration as the output.
Resumo:
In this paper, we explore fundamental limits on the number of tests required to identify a given number of ``healthy'' items from a large population containing a small number of ``defective'' items, in a nonadaptive group testing framework. Specifically, we derive mutual information-based upper bounds on the number of tests required to identify the required number of healthy items. Our results show that an impressive reduction in the number of tests is achievable compared to the conventional approach of using classical group testing to first identify the defective items and then pick the required number of healthy items from the complement set. For example, to identify L healthy items out of a population of N items containing K defective items, when the tests are reliable, our results show that O(K(L - 1)/(N - K)) measurements are sufficient. In contrast, the conventional approach requires O(K log(N/K)) measurements. We derive our results in a general sparse signal setup, and hence, they are applicable to other sparse signal-based applications such as compressive sensing also.
Resumo:
A joint analysis-synthesis framework is developed for the compressive sensing (CS) recovery of speech signals. The signal is assumed to be sparse in the residual domain with the linear prediction filter used as the sparse transformation. Importantly this transform is not known apriori, since estimating the predictor filter requires the knowledge of the signal. Two prediction filters, one comb filter for pitch and another all pole formant filter are needed to induce maximum sparsity. An iterative method is proposed for the estimation of both the prediction filters and the signal itself. Formant prediction filter is used as the synthesis transform, while the pitch filter is used to model the periodicity in the residual excitation signal, in the analysis mode. Significant improvement in the LLR measure is seen over the previously reported formant filter estimation.
Resumo:
Compressive Sensing theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate and computational complexity of the measurement system. In recent years, many recovery algorithms were proposed to reconstruct the signal efficiently. Look Ahead OMP (LAOMP) is a recently proposed method which uses a look ahead strategy and performs significantly better than other greedy methods. In this paper, we propose a modification to the LAOMP algorithm to choose the look ahead parameter L adaptively, thus reducing the complexity of the algorithm, without compromising on the performance. The performance of the algorithm is evaluated through Monte Carlo simulations.
Resumo:
Compressive Sensing (CS) theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate. In recent years, many recovery algorithms have been proposed to reconstruct the signal efficiently. Subspace Pursuit and Compressive Sampling Matching Pursuit are some of the popular greedy methods. Also, Fusion of Algorithms for Compressed Sensing is a recently proposed method where several CS reconstruction algorithms participate and the final estimate of the underlying sparse signal is determined by fusing the estimates obtained from the participating algorithms. All these methods involve solving a least squares problem which may be ill-conditioned, especially in the low dimension measurement regime. In this paper, we propose a step prior to least squares to ensure the well-conditioning of the least squares problem. Using Monte Carlo simulations, we show that in low dimension measurement scenario, this modification improves the reconstruction capability of the algorithm in clean as well as noisy measurement cases.
Resumo:
We propose data acquisition from continuous-time signals belonging to the class of real-valued trigonometric polynomials using an event-triggered sampling paradigm. The sampling schemes proposed are: level crossing (LC), close to extrema LC, and extrema sampling. Analysis of robustness of these schemes to jitter, and bandpass additive gaussian noise is presented. In general these sampling schemes will result in non-uniformly spaced sample instants. We address the issue of signal reconstruction from the acquired data-set by imposing structure of sparsity on the signal model to circumvent the problem of gap and density constraints. The recovery performance is contrasted amongst the various schemes and with random sampling scheme. In the proposed approach, both sampling and reconstruction are non-linear operations, and in contrast to random sampling methodologies proposed in compressive sensing these techniques may be implemented in practice with low-power circuitry.
Resumo:
In this work, spectrum sensing for cognitive radios is considered in the presence of multiple Primary Users (PU) using frequency-hopping communication over a set of frequency bands. The detection performance of the Fast Fourier Transform (FFT) Average Ratio (FAR) algorithm is obtained in closed-form, for a given FFT size and number of PUs. The effective throughput of the Secondary Users (SU) is formulated as an optimization problem with a constraint on the maximum allowable interference on the primary network. Given the hopping period of the PUs, the sensing duration that maximizes the SU throughput is derived. The results are validated using Monte Carlo simulations. Further, an implementation of the FAR algorithm on the Lyrtech (now, Nutaq) small form factor software defined radio development platform is presented, and the performance recorded through the hardware is observed to corroborate well with that obtained through simulations, allowing for implementation losses. (C) 2015 Elsevier B.V. All rights reserved.