12 resultados para task performance benchmarking

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the underlay mode of cognitive radio, secondary users are allowed to transmit when the primary is transmitting, but under tight interference constraints that protect the primary. However, these constraints limit the secondary system performance. Antenna selection (AS)-based multiple antenna techniques, which exploit spatial diversity with less hardware, help improve secondary system performance. We develop a novel and optimal transmit AS rule that minimizes the symbol error probability (SEP) of an average interference-constrained multiple-input-single-output secondary system that operates in the underlay mode. We show that the optimal rule is a non-linear function of the power gain of the channel from the secondary transmit antenna to the primary receiver and from the secondary transmit antenna to the secondary receive antenna. We also propose a simpler, tractable variant of the optimal rule that performs as well as the optimal rule. We then analyze its SEP with L transmit antennas, and extensively benchmark it with several heuristic selection rules proposed in the literature. We also enhance these rules in order to provide a fair comparison, and derive new expressions for their SEPs. The results bring out new inter-relationships between the various rules, and show that the optimal rule can significantly reduce the SEP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy harvesting sensor (EHS) nodes provide an attractive and green solution to the problem of limited lifetime of wireless sensor networks (WSNs). Unlike a conventional node that uses a non-rechargeable battery and dies once it runs out of energy, an EHS node can harvest energy from the environment and replenish its rechargeable battery. We consider hybrid WSNs that comprise of both EHS and conventional nodes; these arise when legacy WSNs are upgraded or due to EHS deployment cost issues. We compare conventional and hybrid WSNs on the basis of a new and insightful performance metric called k-outage duration, which captures the inability of the nodes to transmit data either due to lack of sufficient battery energy or wireless fading. The metric overcomes the problem of defining lifetime in networks with EHS nodes, which never die but are occasionally unable to transmit due to lack of sufficient battery energy. It also accounts for the effect of wireless channel fading on the ability of the WSN to transmit data. We develop two novel, tight, and computationally simple bounds for evaluating the k-outage duration. Our results show that increasing the number of EHS nodes has a markedly different effect on the k-outage duration than increasing the number of conventional nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, we propose the design and simulation study of a novel transistor, called HFinFET, which is a hybrid of an HEMT and a FinFET, to obtain excellent performance and good OFF-state control. Followed by the description of the design, 3-D device simulation has been performed to predict the characteristics of the device. The device has been benchmarked against published state of the art HEMT as well as planar and nonplanar Si n-MOSFET data of comparable gate length using standard benchmarking techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processor architects have a challenging task of evaluating a large design space consisting of several interacting parameters and optimizations. In order to assist architects in making crucial design decisions, we build linear regression models that relate Processor performance to micro-architecture parameters, using simulation based experiments. We obtain good approximate models using an iterative process in which Akaike's information criteria is used to extract a good linear model from a small set of simulations, and limited further simulation is guided by the model using D-optimal experimental designs. The iterative process is repeated until desired error bounds are achieved. We used this procedure to establish the relationship of the CPI performance response to 26 key micro-architectural parameters using a detailed cycle-by-cycle superscalar processor simulator The resulting models provide a significance ordering on all micro-architectural parameters and their interactions, and explain the performance variations of micro-architectural techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fallibility is inherent in human cognition and so a system that will monitor performance is indispensable. While behavioral evidence for such a system derives from the finding that subjects slow down after trials that are likely to produce errors, the neural and behavioral characterization that enables such control is incomplete. Here, we report a specific role for dopamine/basal ganglia in response conflict by accessing deficits in performance monitoring in patients with Parkinson's disease. To characterize such a deficit, we used a modification of the oculomotor countermanding task to show that slowing down of responses that generate robust response conflict, and not post-error per se, is deficient in Parkinson's disease patients. Poor performance adjustment could be either due to impaired ability to slow RT subsequent to conflicts or due to impaired response conflict recognition. If the latter hypothesis was true, then PD subjects should show evidence of impaired error detection/correction, which was found to be the case. These results make a strong case for impaired performance monitoring in Parkinson's patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multiple UAV search and attack mission in a battlefield involves allocating UAVs to different target tasks efficiently. This task allocation becomes difficult when there is no communication among the UAVs and the UAVs sensors have limited range to detect the targets and neighbouring UAVs, and assess target status. In this paper, we propose a team theoretic approach to efficiently allocate UAVs to the targets with the constraint that UAVs do not communicate among themselves and have limited sensor range. We study the performance of team theoretic approach for task allocation on a battle field scenario. The performance obtained through team theory is compared with two other methods, namely, limited sensor range but with communication among all the UAVs, and greedy strategy with limited sensor range and no communication. It is found that the team theoretic strategy performs the best even though it assumes limited sensor range and no communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have benchmarked the maximum obtainable recognition accuracy on five publicly available standard word image data sets using semi-automated segmentation and a commercial OCR. These images have been cropped from camera captured scene images, born digital images (BDI) and street view images. Using the Matlab based tool developed by us, we have annotated at the pixel level more than 3600 word images from the five data sets. The word images binarized by the tool, as well as by our own midline analysis and propagation of segmentation (MAPS) algorithm are recognized using the trial version of Nuance Omnipage OCR and these two results are compared with the best reported in the literature. The benchmark word recognition rates obtained on ICDAR 2003, Sign evaluation, Street view, Born-digital and ICDAR 2011 data sets are 83.9%, 89.3%, 79.6%, 88.5% and 86.7%, respectively. The results obtained from MAPS binarized word images without the use of any lexicon are 64.5% and 71.7% for ICDAR 2003 and 2011 respectively, and these values are higher than the best reported values in the literature of 61.1% and 41.2%, respectively. MAPS results of 82.8% for BDI 2011 dataset matches the performance of the state of the art method based on power law transform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-task learning solves multiple related learning problems simultaneously by sharing some common structure for improved generalization performance of each task. We propose a novel approach to multi-task learning which captures task similarity through a shared basis vector set. The variability across tasks is captured through task specific basis vector set. We use sparse support vector machine (SVM) algorithm to select the basis vector sets for the tasks. The approach results in a sparse model where the prediction is done using very few examples. The effectiveness of our approach is demonstrated through experiments on synthetic and real multi-task datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the computational bottlenecks in molecular dynamics (MD) and describe the challenges in parallelizing the computation-intensive tasks. We present a hybrid algorithm using MPI (Message Passing Interface) with OpenMP threads for parallelizing a generalized MD computation scheme for systems with short range interatomic interactions. The algorithm is discussed in the context of nano-indentation of Chromium films with carbon indenters using the Embedded Atom Method potential for Cr-Cr interaction and the Morse potential for Cr-C interactions. We study the performance of our algorithm for a range of MPI-thread combinations and find the performance to depend strongly on the computational task and load sharing in the multi-core processor. The algorithm scaled poorly with MPI and our hybrid schemes were observed to outperform the pure message passing scheme, despite utilizing the same number of processors or cores in the cluster. Speed-up achieved by our algorithm compared favorably with that achieved by standard MD packages. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed system has quite a lot of servers to attain increased availability of service and for fault tolerance. Balancing the load among these servers is an important task to achieve better performance. There are various hardware and software based load balancing solutions available. However there is always an overhead on Servers and the Load Balancer while communicating with each other and sharing their availability and the current load status information. Load balancer is always busy in listening to clients' request and redirecting them. It also needs to collect the servers' availability status frequently, to keep itself up-to-date. Servers are busy in not only providing service to clients but also sharing their current load information with load balancing algorithms. In this paper we have proposed and discussed the concept and system model for software based load balancer along with Availability-Checker and Load Reporters (LB-ACLRs) which reduces the overhead on server and the load balancer. We have also described the architectural components with their roles and responsibilities. We have presented a detailed analysis to show how our proposed Availability Checker significantly increases the performance of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nodes with dynamicity, and management without administrator are key features of mobile ad hoc networks (1VIANETs). Increasing resource requirements of nodes running different applications, scarcity of resources, and node mobility in MANETs are the important issues to be considered in allocation of resources. Moreover, management of limited resources for optimal allocation is a crucial task. In our proposed work we discuss a design of resource allocation protocol and its performance evaluation. The proposed protocol uses both static and mobile agents. The protocol does the distribution and parallelization of message propagation (mobile agent with information) in an efficient way to achieve scalability and speed up message delivery to the nodes in the sectors of the zones of a MANET. The protocol functionality has been simulated using Java Agent Development Environment (JADE) Framework for agent generation, migration and communication. A mobile agent migrates from central resource rich node with message and navigate autonomously in the zone of network until the boundary node. With the performance evaluation, it has been concluded that the proposed protocol consumes much less time to allocate the required resources to the nodes under requirement, utilize less network resources and increase the network scalability. (C) 2015 Elsevier B.V. All rights reserved.