75 resultados para sulfanilamide derivatives of chitosan and chitosan sulfates

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dehydroamino acids are important precursors for the synthesis of a number of unnatural amino acids and are structural components in many biologically active peptide derivatives. However, efficient synthetic procedures for their production in large amounts and without side reactions are limited. We report here an improved procedure for the synthesis of dehydroalanine and dehydroamino butyric acid from the carbonate derivatives of serine and threonine using TBAF. The antiselective E-2 elimination of the carbonate derivatives of serine and threonine using TBAF is milder and more efficient than other available procedures. The elimination reaction is completed in less than 10 min with various carbonate derivatives studied and the methodology is very efficient for the synthesis of dehydroamino acids and dehydropeptides. The procedure thus provides an easy access to key synthetic precursors and can be used to introduce interesting structural elements to designed peptides. Copyright

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of N(1s) core-level spectroscopic studies, it is found that nitrogen interacts with multimolecular films of C60. More interestingly, mass spectrometric studies show that contact-arc vaporization of graphite in a partial atmosphere of N2 or NH3 yields nitrogenous products tentatively assigned to species such as C70N2, C59N6, C59N4, and C59N2 involving addition of or substitution by nitrogen along with the species due to C2 and C4 losses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infrared absorption spectra of some of the derivatives of xanthic Image dithiocarbamic Image and trithiocarbonic Image acids are studied in the sodium chloride optics region and the bands assigned to group frequencies. The position of C---O---C and C=S bands in the derivatives of xanthic acid has been discussed from theoretical and experimental evidences and it is suggested that the two strong bands around 1200 and 1030 cm−1 are due to the Image group. The bands around 980 and 1050 cm−1 in the derivatives of dithiocarbamic and trithiocarbonic acids respectively have been assigned to C=S group frequencies. These bands shift to lower frequency in the corresponding ionic compounds while the bands around 1030 and 1200 cm−1 in the ionic compounds of xanthic acid shift to higher and lower frequencies respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of fluorinated gelators derived from bile acids is reported. Perfluoroalkyl chains were attached to the bile acids through two different ester linkages and were synthesized following simple transformations. The gelation property of these derivatives is a function of the bile acid moiety, the spacer and the fluoroalkyl chain length. By varying these parameters, gels were obtained in aromatic hydrocarbons, DMSO and DMSO/DMF-H(2)O mixtures of different proportions. Several derivatives of deoxycholic and lithocholic acids were found to be efficient organogelators, while the reported bile-acid based organogelators are mostly derived from the cholic acid moiety. The efficient gelators among these compounds formed gels well below 1.0% (w/v) and hence they can be termed as supergelators. The mechanical properties of these gels could be modulated by changing either the bile acid moiety or by varying the length of the fluoroalkyl segment. The presence of CO(2)-philic perfluoroalkyl groups is also expected to enhance their solubility in supercritical CO(2) and hence these compounds are promising candidates for making aerogels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of fluorinated gelators derived from bile acids is reported. Perfluoroalkyl chains were attached to the bile acids through two different ester linkages and were synthesized following simple transformations. The gelation property of these derivatives is a function of the bile acid moiety, the spacer and the fluoroalkyl chain length. By varying these parameters, gels were obtained in aromatic hydrocarbons, DMSO and DMSO/DMF-H(2)O mixtures of different proportions. Several derivatives of deoxycholic and lithocholic acids were found to be efficient organogelators, while the reported bile-acid based organogelators are mostly derived from the cholic acid moiety. The efficient gelators among these compounds formed gels well below 1.0% (w/v) and hence they can be termed as supergelators. The mechanical properties of these gels could be modulated by changing either the bile acid moiety or by varying the length of the fluoroalkyl segment. The presence of CO(2)-philic perfluoroalkyl groups is also expected to enhance their solubility in supercritical CO(2) and hence these compounds are promising candidates for making aerogels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In pursuit of newer and more effective contrast agents for magnetic resonance imaging, we report in this article the use of biocompatible chitosan-coated ferrite nanoparticles of different kinds with a view to determine their potential applications as the contrast agents in the field of nuclear magnetic resonance. The single-phase ferrite particles were synthesized by chemical co-precipitation (CoFe2O4 and Fe3O4) and by applying ultrasonic vibration (CoFe2O4 and Co0.8Zn0.2Fe2O4). Although magnetic anisotropy of CoFe2O4 nanoparticle leads to finite coercivity even for nanoensembles, it has been reduced significantly to a minimum level by applying ultrasonic vibration. Fe3O4 synthesized by chemical co-precipitation yielded particles which already possess negligible coercivity and remanence. Substitution of Co by Zn in CoFe2O4 increases the magnetization significantly with a small increase in coercivity and remanence. Particles synthesized by the application of ultrasonic vibration leads to the higher values of T-2 relaxivities than by chemical coprecipitation. We report that the T-2 relaxivities of these particles are of two orders of magnitude higher than corresponding T-1 relaxivities. Thus, these particles are evidently suitable as contrast agent for T-2 weighted MR images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-fine crystallites of Mn1-xZnxFe2O4 series (0 <= x <= 1) were synthesized through wet chemical co- precipitation method followed by calcination at 200 degrees C for 4 hours. Formation of ferrites was confirmed by X-ray diffraction, TEM selected area diffraction (SAD) and Fourier Transform Infra-red Spectroscopy (FTIR). Nanocrystallites of different compositions in the series were coated with biocompatible chitosan in order to investigate their possible application as contrast agent for magnetic resonance imaging (MRI). Chitosan coating examined by FTIR, revealed a strong bonding of chitosan molecules to the surface of the ferrite nanocrystallites. Spin-spin, tau(2) relaxivities of nuclear spins of hydrogen protons of the solutions for different ferrites were measured from concentration dependence of relaxation time by nuclear magnetic resonance (NMR). All the compositions of Mn1-xZnxFe2O4 series possess higher values of tau(2) relaxivity thus making them suitable as contrast agents for tau(2) weighted imaging by MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Antiretroviral Therapy (ART) is currently the major therapeutic intervention in the treatment of AIDS. ART, however, is severely limited due to poor availability, high cytotoxicity, and enhanced metabolism and clearance of the drug molecules by the renal system. The use of nanocarriers encapsulating the antiretroviral drugs may provide a solution to the aforementioned problems. Importantly, the application of mildly immunogenic polymeric carrier confers the advantage of making the nanoparticles more visible to the immune system leading to their efficient uptake by the phagocytes. Methods: The saquinavir-loaded chitosan nanopartides were characterized by transmission electron microscopy and differential scanning calorimetry and analyzed for the encapsulation efficiency, swelling characteristics, particle size properties, and the zeta potential. Furthermore, cellular uptake of the chitosan nanocarriers was evaluated using confocal microscopy and Flow cytometry. The antiviral efficacy was quantified using viral infection of the target cells. Results: Using novel chitosan carriers loaded with saquinavir, a protease inhibitor, we demonstrate a drug encapsulation efficiency of 75% and cell targeting efficiency greater than 92%. As compared to the soluble drug control, the saquinavir-loaded chitosan carriers caused superior control of the viral proliferation as measured by using two different viral strains, NL4-3 and Indie-C1, and two different target T-cells, Jurkat and CEM-CCR5. Conclusion: Chitosan nanoparticles loaded with saquinavir were characterized and they demonstrated superior drug loading potential with greater cell targeting efficiency leading to efficient control of the viral proliferation in target T-cells. General significance: Our data ascertain the potential of chitosan nanocarriers as novel vehicles for HIV-1 therapeutics. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using a novel microfluidic set-up for drug screening applications, this study examines delivery of a novel risedronate based drug formulation for treatment of osteoporosis that was developed to overcome the usual shortcomings of risedronate, such as its low bioavailability and adverse gastric effects. Risedronate nanoparticles were prepared using muco-adhesive polymers such as chitosan as matrix for improving the intestinal cellular absorption of risedronate and also using a gastric-resistant polymer such as sodium alginate for reducing the gastric inflammation of risedronate. The in-vitro characteristics of the alginate encapsulated chitosan nanoparticles are investigated, including their stability, muco-adhesiveness, and Caco-2 cell permeability. Fluorescent markers are tagged with the polymers and their morphology within the microcapsules is imaged at various stages of drug release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From a computer simulation of the 270 MHz 1H NMR spectra of hydroxyproline (Hyp) and its protected derivatives, precise values of ring vicinal coupling constants were obtained. These couplings were related to ring torsional angles, using a Karplus type analysis. From the NMR analysis it was observed that the pyrrolidine ring possesses a unique and highly homogeneous conformation (Cγ-exo form). Temperature dependence studies on protected dipeptides suggest that the pyrrolidine ring conformation is independent of backbone conformation. An unusual X-Hyp, β-turn was observed for Boc-Aib-Hyp-NHMe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isolation and characterization of the initial intermediates formed during the irreversible acid denaturation of enzyme Ribonuclease A are described. The products obtained when RNase A is maintained in 0.5 M HCl at 30° for periods up to 20 h have been analyzed by ion-exchange chromatography on Amberlite XE-64. Four distinct components were found to elute earlier to RNase A; these have been designated RNase Aa2, Aa1c, Aa1b, and Aa1a in order of their elution. With the exception of RNase Aa2, the other components are nearly as active as RNase A. Polyacrylamide gel electrophoresis at near-neutral pH indicated that RNase Aa1a, Aa1b, and Aa1c are monodeamidated derivatives of RNase A; RNase Aa2 contains, in addition, a small amount of a dideamidated component. RNase Aa2, which has 75% enzymic activity as compared to RNase A, consists of dideamidated and higher deamidated derivatives of RNase A. Except for differences in the proteolytic susceptibilities at an elevated temperature or acidic pH, the monodeamidated derivatives were found to have very nearly the same enzymic activity and the compact folded structure as the native enzyme. Fingerprint analyses of the tryptic peptides of monodeamidated derivatives have shown that the deamidations are restricted to an amide cluster in the region 67–74 of the polypeptide chain. The initial acid-catalyzed deamidation occurs in and around the 65–72 disulfide loop giving rise to at least three distinct monodeamidated derivatives of RNase A without an appreciable change in the catalytic activity and conformation of the ribonuclease molecule. Significance of this specific deamidation occurring in highly acidic conditions, and the biological implications of the physiological deamidation reactions of proteins are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simple and convenient methods for introducing deuterium label at C-3 and C-6 position of N-acetyl-D-galactosamine and D-galactose, respectively, are described. For the synthesis of 2-acetamido-2-deoxy-D-3-[2H] galactopyranose, benzyl 2-acetamido-2-deoxy-4,6-O-benzylidene-agr-D-galactopyranoside was oxidized with dimethyl sulfoxide- acetic anhydride and the product was reduced with sodium borodeuteride to introduce the deuterium at C-3. After benzylidene reduction, the mixture was subjected to hydrogenolysis and purified by column chromatography. 1,2:3,4-di-O-isopropylidene-agr-D-galactopyranoside was oxidized followed by reduction with sodium borodeuteride and deprotection to yield D-6-[2H] galactose.