23 resultados para stream macroalgae
em Indian Institute of Science - Bangalore - Índia
Resumo:
The critical stream power criterion may be used to describe the incipient motion of cohesionless particles of plane sediment beds. The governing equation relating ``critical stream power'' to ``shear Reynolds number'' is developed by using the present experimental data as well as the data from several other sources. Simultaneously, a resistance equation, relating the ``particle Reynolds number'' to the``shear Reynolds number'' is developed for plane sediment beds in wide channels with little or no transport. By making use of these relations, a procedure is developed to design plane sediment beds such that any two of the four design variables, including particle size, energy/friction slope, flow depth, and discharge per unit width in the channel should be known to predict the remaining two variables. Finally, a straightforward design procedure using design tables/design curves and analytical methods is presented to solve six possible design problems.
Resumo:
The StreamIt programming model has been proposed to exploit parallelism in streaming applications oil general purpose multicore architectures. The StreamIt graphs describe task, data and pipeline parallelism which can be exploited on accelerators such as Graphics Processing Units (GPUs) or CellBE which support abundant parallelism in hardware. In this paper, we describe a novel method to orchestrate the execution of if StreamIt program oil a multicore platform equipped with an accelerator. The proposed approach identifies, using profiling, the relative benefits of executing a task oil the superscalar CPU cores and the accelerator. We formulate the problem of partitioning the work between the CPU cores and the GPU, taking into account the latencies for data transfers and the required buffer layout transformations associated with the partitioning, as all integrated Integer Linear Program (ILP) which can then be solved by an ILP solver. We also propose an efficient heuristic algorithm for the work-partitioning between the CPU and the GPU, which provides solutions which are within 9.05% of the optimal solution on an average across the benchmark Suite. The partitioned tasks are then software pipelined to execute oil the multiple CPU cores and the Streaming Multiprocessors (SMs) of the GPU. The software pipelining algorithm orchestrates the execution between CPU cores and the GPU by emitting the code for the CPU and the GPU, and the code for the required data transfers. Our experiments on a platform with 8 CPU cores and a GeForce 8800 GTS 512 GPU show a geometric mean speedup of 6.94X with it maximum of 51.96X over it single threaded CPU execution across the StreamIt benchmarks. This is a 18.9% improvement over it partitioning strategy that maps only the filters that cannot be executed oil the GPU - the filters with state that is persistent across firings - onto the CPU.
Resumo:
The StreamIt programming model has been proposed to exploit parallelism in streaming applications on general purpose multi-core architectures. This model allows programmers to specify the structure of a program as a set of filters that act upon data, and a set of communication channels between them. The StreamIt graphs describe task, data and pipeline parallelism which can be exploited on modern Graphics Processing Units (GPUs), as they support abundant parallelism in hardware. In this paper, we describe the challenges in mapping StreamIt to GPUs and propose an efficient technique to software pipeline the execution of stream programs on GPUs. We formulate this problem - both scheduling and assignment of filters to processors - as an efficient Integer Linear Program (ILP), which is then solved using ILP solvers. We also describe a novel buffer layout technique for GPUs which facilitates exploiting the high memory bandwidth available in GPUs. The proposed scheduling utilizes both the scalar units in GPU, to exploit data parallelism, and multiprocessors, to exploit task and pipelin parallelism. Further it takes into consideration the synchronization and bandwidth limitations of GPUs, and yields speedups between 1.87X and 36.83X over a single threaded CPU.
Resumo:
The impact of riparian land use on the stream insect communities was studied at Kudremukh National Park located within Western Ghats, a tropical biodiversity hotspot in India. The diversity and community composition of stream insects varied across streams with different riparian land use types. The rarefied family and generic richness was highest in streams with natural semi evergreen forests as riparian vegetation. However, when the streams had human habitations and areca nut plantations as riparian land use type, the rarefied richness was higher than that of streams with natural evergreen forests and grasslands. The streams with scrub lands and iron ore mining as the riparian land use had the lowest rarefied richness. Within a landscape, the streams with the natural riparian vegetation had similar community composition. However, streams with natural grasslands as the riparian vegetation, had low diversity and the community composition was similar to those of paddy fields. We discuss how stream insect assemblages differ due to varied riparian land use patterns, reflecting fundamental alterations in the functioning of stream ecosystems. This understanding is vital to conserve, manage and restore tropical riverine ecosystems.
Resumo:
The problem of two-stream instability in plasma is studied by specifying the importance of initial magnetic field associated with the motion of the charged particles and the boundary effects. In Part I the accurate initial steady state is studied when the streams of electrons and ions move with different uniform speeds in plasmas with plane and cylindrical geometry. In Part II, in order to show the effects of finiteness and inhomogeneity of the system, small transverse plasma oscillations are studied in the case of plane plasmas. The role of plasma-sheath oscillations at the boundaries is found to be very important in driving the instabilities associated with the electromagnetic modes. The numerical estimates of the growth rates of the instability are given for the specific case of the physical data in discharge tubes.
Resumo:
The effect of vibration on heat transfer from a horizontal copper cylinder, 0.344 in. in diameter and 6 in. long, was investigated. The cylinder was placed normal to an air stream and was sinusoidally vibrated in a direction perpendicular to the direction of the air stream. The flow velocity varied from 19 ft/s to 92 ft/s; the double amplitude of vibration from 0.75 cm to 3.2 cm, and the frequency of vibration from 200 to 2800 cycles/min. A transient technique was used to determine the heat transfer coefficients. The experimental data in the absence of vibration is expressed by NNu = 0.226 NRe0.6 in the range 2500 < NRe < 15 000. By imposing vibrational velocities as high as 20 per cent of the flow velocity, no appreciable change in the heat transfer coefficient was observed. An analysis using the resultant of the vibration and the flow velocity explains the observed phenomenon.
Resumo:
Pt2+ ion dispersed in CeO2, Ce1-xTixO2-delta and TiO2 have been tested for preferential oxidation of carbon monoxide (PROX) in hydrogen rich stream. It is found that Pt2+ substituted CeO2 and Ce(1-x)TixO(2-delta) in the form of solid solution Ce0.98Pt0.02O2-delta and Ce0.83Ti0.15Pt0.02O2-delta are highly CO selective low temperature PROX catalysts in hydrogen rich stream. Just 15% of Ti substitution in CeO2 improves the overall PROX activity.
Flow And Heat-Transfer Over An Upstream Moving Wall With A Magnetic-Field And A Parallel Free Stream
Resumo:
The flow and heat transfer over an upstream moving non-isothermal wall with a parallel free stream have been considered. The magnetic field has been applied in the free stream parallel to the wall and the effect of induced magnetic field has been included in the analysis. The boundary layer equations governing the steady incompressible electrically conducting fluid flow have been solved numerically using a shooting method. This problem is interesting because a solution exists only when the ratio of the wall velocity does not exceed a certain critical value and this critical value depends on the magnetic field and magnetic Prandtl number. Also dual solutions exist for a certain range of wall velocity.
Resumo:
Boundary-layer transition at different free-stream turbulence levels has been investigated using the particle-image velocimetry technique. The measurements show organized positive and negative fluctuations of the streamwise fluctuating velocity component, which resemble the forward and backward jet-like structures reported in the direct numerical simulation of bypass transition. These fluctuations are associated with unsteady streaky structures. Large inclined high shear-layer regions are also observed and the organized negative fluctuations are found to appear consistently with these inclined shear layers, along with highly inflectional instantaneous streamwise velocity profiles. These inflectional velocity profiles are similar to those in the ribbon-induced boundary-layer transition. An oscillating-inclined shear layer appears to be the turbulent spot-precursor. The measurements also enabled to compare the actual turbulent spot in bypass transition with the simulated one. A proper orthogonal decomposition analysis of the fluctuating velocity field is carried out. The dominant flow structures of the organized positive and negative fluctuations are captured by the first few eigenfunction modes carrying most of the fluctuating energy. The similarity in the dominant eigenfunctions at different Reynolds numbers suggests that the flow prevails its structural identity even in intermittent flows. This analysis also indicates the possibility of the existence of a spatio-temporal symmetry associated with a travelling wave in the flow.
Resumo:
Community diversity and the population abundance of a particular group of species are controlled by immediate environment, inter-and intra-species interactions, landscape conditions, historical events and evolutionary processes. Nestedness is a measure of order in an ecological system, referring to the order in which the number of species is related to area or other factors. In this study we have studied the nestedness pattern in stream diatom assemblages in 24 stream sites of central Western Ghats, and report 98 taxa from the streams of central Western Ghats region. The communities show highly significant nested pattern. The Mantel test of matrix revealed a strong relationship between species assemblages and environmental conditions at the sites. A significant relationship between species assemblage and environmental condition was observed. Principal component analysis (PCA) indicated that environmental conditions differed markedly across the sampling sites, with the first three components explaining 78% of variance. Species composition of diatoms is significantly correlated with environmental distance across geographical extent. The current pattern suggests that micro-environment at regional levels influences the species composition of epilithic diatoms in streams. The nestedness shown by the diatom community was highly significant, even though it had a high proportion of idiosyncratic species, characterized with high numbers of cosmopolitan species, whereas the nested species were dominated by endemic species. PCA identifies ionic parameters and nutrients as the major features which determine the characteristics of the sampling sites. Hence the local water quality parameters are the major factors in deciding the diatom species assemblages.
Resumo:
Downward seepage (suction) increases the mobility of the channel. In this study, experimental investigations were carried out to analyse the suction effect on stream power along the downstream side of the flume. It was observed that stream power has a major influence on the stability and mobility of the bed particles, due to suction. Stream power is found to be greater at the upstream side and lower at the downstream side. This reduces the increment in the mobility of the sand particles due to suction at the downstream side. Thus, there is more erosion at the upstream side than the downstream side. It was also found that the amount of deposition of sand particles at the downstream side, because of the high stream power at the upstream side, is greater than the amount of erosion of sand particles from the downstream side.
Resumo:
The non-similar boundary layer flow of a viscous incompressible electrically conducting fluid over a moving surface in a rotating fluid, in the presence of a magnetic field, Hall currents and the free stream velocity has been studied. The parabolic partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. The Coriolis force induces overshoot in the velocity profile of the primary flow and the magnetic field reduces/removes the velocity overshoot. The local skin friction coefficient for the primary flow increases with the magnetic field, but the skin friction coefficient for the secondary flow reduces it. Also the local skin friction coefficients for the primary and secondary flows are reduced due to the Hall currents. The effects of the magnetic field, Hall currents and the wall velocity, on the skin friction coefficients for the primary and secondary flows increase with the Coriolis force. The wall velocity strongly affects the flow field. When the wall velocity is equal to the free stream velocity, the skin friction coefficients for the primary and secondary flows vanish, but this does not imply separation. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.