10 resultados para straw burning of sugarcane

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the extensive data and correlations on the erosive burning of solid propellants. A relatively simple nondimensional relationship between the ratio of the actual to nonerosive burn rate (eta) and a quantity g, which is the product of g(0)-the ratio of free stream mass flux to the mass flux from the surface for nonerosive condition-and Re-0(m), where Re-0 is the Reynolds number based on the nonerosive mass flux of the propellant and port diameter, is shown to correlate most data within the accuracies of the experiments with m = -0.125. This shows the above relationship to account for the effects of pressure, aluminum, even up to a proportion of 17%, burn rate catalysts, and motor size. It is concluded that the suggested correlation between eta and g may be adopted universally for most practical propellants. (C) 1997 by The Combustion Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugarcane streak mosaic virus (SCSMV), causes mosaic disease of sugarcane and is thought to belong to a new undescribed genus in the family Potyviridae. The coat protein (CP) gene from the Andhra Pradesh (AP) isolate of SCSMV (SCSMV AP) was cloned and expressed in Escherichia coli. The recombinant coat protein was used to raise high quality antiserum. The CP antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) based assay for the detection and discrimination of SCSMV isolates in South India. The sequence of the cloned PCR products encoding 3'untranslated region (UTR) and CP regions of the virus isolates from three different locations in South India viz. Tanuku (Coastal Andhra Pradesh), Coimbatore (Tamil Nadu) and Hospet (Karnataka) was compared with that of SCSMV AP The analysis showed that they share 89.4, 89.5 and 90% identity respectively at the nucleotide level. This suggests that the isolates causing mosaic disease of sugarcane in South India are indeed strains of SCSMV In addition, the sensitivity of the IC-RT-PCR was compared with direct antigen coating-enzyme linked immunosorbent assay (DAC-ELISA) and dot-blot immunobinding assays and was found to be more sensitive and hence could be used to detect the presence of virus in sugarcane breeding, germplasm centres and in quarantine programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combustion is a complex phenomena involving a multiplicity of variables. Some important variables measured in flame tests follow [1]. In order to characterize ignition, such related parameters as ignition time, ease of ignition, flash ignition temperature, and self-ignition temperature are measured. For studying the propagation of the flame, parameters such as distance burned or charred, area of flame spread, time of flame spread, burning rate, charred or melted area, and fire endurance are measured. Smoke characteristics are studied by determining such parameters as specific optical density, maximum specific optical density, time of occurrence of the densities, maximum rate of density increase, visual obscuration time, and smoke obscuration index. In addition to the above variables, there are a number of specific properties of the combustible system which could be measured. These are soot formation, toxicity of combustion gases, heat of combustion, dripping phenomena during the burning of thermoplastics, afterglow, flame intensity, fuel contribution, visual characteristics, limiting oxygen concentration (OI), products of pyrolysis and combustion, and so forth. A multitude of flammability tests measuring one or more of these properties have been developed [2]. Admittedly, no one small scale test is adequate to mimic or assess the performance of a plastic in a real fire situation. The conditions are much too complicated [3, 4]. Some conceptual problems associated with flammability testing of polymers have been reviewed [5, 6].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fly ash is a waste by-product obtained from the burning of coal by thermal power plants for generating electricity. When bulk quantities are involved, in order to arrest the fugitive dust, it is stored wet rather than dry. Fly ash contains trace concentrations of heavy metals and other substances in sufficient quantities to be able to leach out over a period of time. In this study an attempt was made to study the leachabilities of a few selected trace metals: Cd, Cu, Cr, Mn, Pb and Zn from two different types of class F fly ashes. Emphasis is also laid on developing an alternative in order to arrest the relative leachabilities of heavy metals after amending them with suitable additives. A standard laboratory leaching test for combustion residues has been employed to study the leachabilities of these trace elements as a function of liquid to solid ratio and pH. The leachability tests were conducted on powdered fly ash samples before and after amending them suitably with the matrices lime and gypsum; they were compacted to their respective proctor densities and cured for periods of 28 and 180 days. A marked reduction in the relative leachabilities of the trace elements was observed to be present at the end of 28 days. These relative leachability values further reduced marginally when tests were performed at the end of 180 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper contains an analysis of the technical options in agriculture for reducing greenhouse-gas emissions and increasing sinks, arising from three distinct mechanisms: (i) increasing carbon sinks in soil organic matter and above-ground biomass; (ii) avoiding carbon emissions from farms by reducing direct and indirect energy use; and (iii) increasing renewable-energy production from biomass that either substitutes for consumption of fossil fuels or replaces inefficient burning of fuelwood or crop residues, and so avoids carbon emissions, together with use of biogas digesters and improved cookstoves. We then review best-practice sustainable agriculture and renewable-resource-management projects and initiatives in China and India, and analyse the annual net sinks being created by these projects, and the potential market value of the carbon sequestered. We conclude with a summary of the policy and institutional conditions and reforms required for adoption of best sustainability practice in the agricultural sector to achieve the desired reductions in emissions and increases in sinks. A review of 40 sustainable agriculture and renewable-resource-management projects in China and India under the three mechanisms estimated a carbon mitigation potential of 64.8 MtC yr(-1) from 5.5 Mha. The potential income for carbon mitigation is $324 million at $5 per tonne of carbon. The potential exists to increase this by orders of magnitude, and so contribute significantly to greenhouse-gas abatement. Most agricultural mitigation options also provide several ancillary benefits. However, there are many technical, financial, policy, legal and institutional barriers to overcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide emissions from the burning of coal, oil, and gas are increasing atmospheric carbon dioxide concentrations. These increased concentrations cause additional energy to be retained in Earth's climate system, thus increasing Earth's temperature. Various methods have been proposed to prevent this temperature increase either by reflecting to space sunlight that would otherwise warm Earth or by removing carbon dioxide from the atmosphere. Such intentional alteration of planetary-scale processes has been termed geoengineering. The first category of geoengineering method, solar geoengineering (also known as solar radiation management, or SRM), raises novel global-scale governance and environmental issues. Some SRM approaches are thought to be low in cost, so the scale of SRM deployment will likely depend primarily on considerations of risk. The second category of geoengineering method, carbon dioxide removal (CDR), raises issues related primarily to scale, cost, effectiveness, and local environmental consequences. The scale of CDR deployment will likely depend primarily on cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tiruvadi Sambasiva Venkatraman (TSV) was a plant breeder. In response to a call from Pundit Madan Mohan Malaviya, he made it his mission to develop high-yielding varieties of sugarcane for manufacturing sugar and making it available as a sweetening agent and an energy source for the malnourished children of India. Using Saccharum officinarum, then under cultivation in India, as the female parent, he artificially fertilized it with pollen from S. barberi, which grew wild in Coimbatore. After 4-5 recurrent backcrossings of S. officinarum Chi wild Sorghum spontaneum with S. officinarum as the female parent, TSV selected the `rare' interspecies hybrid cane varieties that resembled sugarcane and had approximately 2.5 cm thick juicy stems containing 16-18% sucrose - nearly 35 times more than what occurred in parent stocks. The hybrid canes matured quickly, were resistant to waterlogging, drought, and to the red-rot disease caused by Glomerella tucumanensis (Sordariomycetes: Glomerellaceae), and to the sereh-virus disease. Most importantly, they were amenable for propagation using stem cuttings. In recognition of the development of high-yielding sugarcane varieties, TSV was conferred the titles Rao Bahadur, Rao Sahib, and Sir by the British Government, and Padma Bhushan by the Republic of India. In the next few decades, consequent to TSV's work, India turned into the second largest sugar producer in the world, after Brazil. The hybrid sugarcane varieties developed are the foundational stocks for new sugarcane x bamboo hybrids, and for possible resistance to Puccinia megalocephala (Pucciniomycetes: Pucciniaceae) and Ustilago scitaminea (Ustilaginomycetes: Ustilaginaceae) using molecular techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentration of greenhouse gases (GHG) in the atmosphere has been increasing rapidly during the last century due to ever increasing anthropogenic activities resulting in significant increases in the temperature of the Earth causing global warming. Major sources of GHG are forests (due to human induced land cover changes leading to deforestation), power generation (burning of fossil fuels), transportation (burning fossil fuel), agriculture (livestock, farming, rice cultivation and burning of crop residues), water bodies (wetlands), industry and urban activities (building, construction, transport, solid and liquid waste). Aggregation of GHG (CO2 and non-CO2 gases), in terms of Carbon dioxide equivalent (CO(2)e), indicate the GHG footprint. GHG footprint is thus a measure of the impact of human activities on the environment in terms of the amount of greenhouse gases produced. This study focuses on accounting of the amount of three important greenhouses gases namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and thereby developing GHG footprint of the major cities in India. National GHG inventories have been used for quantification of sector-wise greenhouse gas emissions. Country specific emission factors are used where all the emission factors are available. Default emission factors from IPCC guidelines are used when there are no country specific emission factors. Emission of each greenhouse gas is estimated by multiplying fuel consumption by the corresponding emission factor. The current study estimates GHG footprint or GHG emissions (in terms of CO2 equivalent) for Indian major cities and explores the linkages with the population and GDP. GHG footprint (Aggregation of Carbon dioxide equivalent emissions of GHG's) of Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad are found to be 38,633.2 Gg, 22,783.08 Gg, 14,812.10 Gg, 22,090.55 Gg, 19,796.5 Gg, 13,734.59 Gg and 91,24.45 Gg CO2 eq., respectively. The major contributors sectors are transportation sector (contributing 32%, 17.4%, 13.3%, 19.5%, 43.5%, 56.86% and 25%), domestic sector (contributing 30.26%, 37.2%, 42.78%, 39%, 21.6%, 17.05% and 27.9%) and industrial sector (contributing 7.9%, 7.9%, 17.66%, 20.25%, 1231%, 11.38% and 22.41%) of the total emissions in Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad, respectively. Chennai emits 4.79 t of CO2 equivalent emissions per capita, the highest among all the cities followed by Kolkata which emits 3.29 t of CO2 equivalent emissions per capita. Also Chennai emits the highest CO2 equivalent emissions per GDP (2.55 t CO2 eq./Lakh Rs.) followed by Greater Bangalore which emits 2.18 t CO2 eq./Lakh Rs. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of surface and subsurface reactions in polymer combustion is poorly underst0od.l During the burning of thermoplastic polymers a melt layer is observed on the surface, and below the melt layer there is thermal wave penetration. But the exact thickness of the melt layer and the thickness of the thermal wave penetration have not been precisely measured, although a qualitative idea has been given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonlinear model is developed to numerically simulate dynamic combustion inside a solid rocket motor chamber. Using this model, the phenomena of re-ignition and chuffing are investigated under low-L* conditions. The model consists of two separate submodels (coupled to each other), one for unsteady burning of propellant and the other for unsteady conservation of mass and energy within the chamber. The latter yields instantaneous pressure and temperature within the chamber. The instantaneous burning rate is calculated using a one-dimensional, nonlinear, transient gas-phase model previously developed by the authors. The results presented in this paper show that the model predicts not only the critical L*, but also the various regimes of L*-instabihty. Specifically, the results exhibit (1) amplifying pressure oscillations leading to extinction, and (2) re-ignition after a dormant period following extinction. The re-ignition could be observed only when a radiation heat flux (from the combustion chamber to the propellant surface) was included. Certain high-frequency oscillations, possibly due to intrinsic instability, are observed when the pressure overshoots during re-ignition. At very low values of initial L*, successive cycles of extinction/reignition displaying typical characteristics of chuffing are predicted. Variations of the chuffing frequency and the thickness of propellant burned off during a chuff with L* are found to be qualitatively the same as that reported from experimental observations.