159 resultados para strain gauges

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review gives a brief description of the historical development followed by the origin and the principle of operation of strain gauges. The features of an ideal strain gauge for measurement purposes and the general classes of strain gauges are given. The remaning part is devoted to an important development in strain gauge technology, namely thin film strain gauges. After highlighting the advantages of thin film strain gauges, a review of current data is given. Detailed description of metallic thin film strain gauges is provided and avaliable information on alloy semiconductor and cermet films for their possible use as strain gauge elements has also been included. The importance of ion implantation in tailoring the properties of strain gauges is highlighted. 33 ref.--AA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a pressure transducer with meandering-path thin film strain gauges has been studied. Details of the procedure followed to prepare the thin film strain gauge system on the pressure transducer diaphragm are given. The effect of post-deposition heat treatment on the resistance of the sensing films of the strain gauges and the insulating base layers are discussed. The output of the pressure transducer was studied with various input pressures and excitation voltages. It was found that up to a maximum of 10 V bridge excitation the output was stable and repetitive. The maximum non-linearity and hysteresis observed are ±0.15%, ±0.16% and ±0.14% FSO (full-scale output) for 5, 7.5 and 10 V excitation respectively. Information on the output behaviour of the pressure transducer with temperature is also included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A differential pressure transducer with sputtered gold films as strain gauges has been designed and fabricated. The construction details of the sensing element assembly are given. The details of the strain gauge film configuration employed and the thin-film deposition process are also presented. Information on the output characteristics of the differential pressure transducer such as effect of pressure cycles on output, thermal stability, bidirectional calibration results obtained and individual gauge stability is reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Structural Health Monitoring has gained wide acceptance in the recent pastas a means to monitor a structure and provide an early warning of an unsafe conditionusing real-time data. Utilization of structurally integrated, distributed sensors tomonitor the health of a structure through accurate interpretation of sensor signals andreal-time data processing can greatly reduce the inspection burden. The rapidimprovement of the Fiber Bragg Grating sensor technology for strain, vibration andacoustic emission measurements in recent times make them a feasible alternatives tothe traditional strain gauges transducers and conventional Piezoelectric sensors usedfor Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM).Optical fiber-based sensors offers advantages over conventional strain gauges, PVDFfilm and PZT devices in terms of size, ease of embedment, immunity fromelectromagnetic interference(EMI) and potential for multiplexing a number ofsensors. The objective of this paper is to demonstrate the feasibility of Fiber BraggGrating sensor and compare its utility with the conventional strain gauges and PVDFfilm sensors. For this purpose experiments are being carried out in the laboratory on acomposite wing of a mini air vehicle (MAV). In this paper, the results obtained fromthese preliminary experiments are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A diaphragm-type pressure transducer with a sputtered platinum film strain gauge (sensing film) has been designed and fabricated. The various steps followed to prepare thin film strain gauges on the diaphragm are described. M-bond 450 adhesive (Measurements Group, USA) has been employed as the insulating layer. A detailed procedure to cure this layer is given. A d.c. sputtering method is employed to prepare the platinum films. This paper also includes details of the strain gauge pattern and its location on the diaphragm. A description of the output characteristics and overall behaviour of the platinum thin film pressure transducer is reported.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A steel frame is designed to measure the existing prestressing force in the concrete beams and slabs when embedded inside the concrete members. The steel frame is designed to work on the principles of a vibrating wire strain gauge and in the present study is referred to as a vibrating beam strain gauge (VBSG). The existing strain in the VBSG is evaluated using both frequency data on the stretched member and static strain corresponding to a fixed static load, measured using electrical strain gauges. The evaluated strain in the VBSG corresponds to the existing stain in the concrete surrounding the prestressing strands. The crack reopening load method is used to compute the existing prestressing force in the concrete members and is then compared with the existing prestressing force obtained from the VBSG at that section. Digital image correlation based surface deformation and change in neutral axis monitored by putting electrical strain gauges across the cross section, are used to compute the crack reopening load accurately. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A block of high-purity copper was indented by a 120-degrees diamond-tipped cone. Strain gauges were placed on the surface to measure the radial strains at different surface locations, during loading as well as unloading. The competence of three stress fields proposed for elastic-plastic indentation is assessed by comparing the predicted surface radial strains with those experimentally observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the development of a novel multipoint pressure sensor system suitable for the measurement of human foot pressure distribution has been presented. It essentially consists of a matrix of cantilever sensing elements supported by beams. Foil type strain gauges have been employed for the conversion of foot pressure in to proportional electrical response. Information on the signal conditioning circuitry used is given. Also, the results obtained on the performance of the system are included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural Health Monitoring has gained wide acceptance in the recent past as a means to monitor a structure and provide an early warning of an unsafe condition using real-time data. Utilization of structurally integrated, distributed sensors to monitor the health of a structure through accurate interpretation of sensor signals and real-time data processing can greatly reduce the inspection burden. The rapid improvement of the Fiber Optic Sensor technology for strain, vibration, ultrasonic and acoustic emission measurements in recent times makes it feasible alternative to the traditional strain gauges, PVDF and conventional Piezoelectric sensors used for Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Optical fiber-based sensors offer advantages over conventional strain gauges, and PZT devices in terms of size, ease of embedment, immunity from electromagnetic interference (EMI) and potential for multiplexing a number of sensors. The objective of this paper is to demonstrate the acoustic wave sensing using Extrinsic Fabry-Perot Interferometric (EFPI) sensor on a GFRP composite laminates. For this purpose experiments have been carried out initially for strain measurement with Fiber Optic Sensors on GFRP laminates with intentionally introduced holes of different sizes as defects. The results obtained from these experiments are presented in this paper. Numerical modeling has been carried out to obtain the relationship between the defect size and strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semiautomated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of similar to 1 mu N on an individual pillar and a total average force of similar to 7.68 mu N. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4Hz applying an average force of similar to 1.58 mu N on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of laboratory investigation carried out on Ahmedabad sand on the liquefaction and pore water pressure generation during strain controled cyclic loading. Laboratory experiments were carried out on representative natural sand samples (base sand) collected from earthquake-affected area of Ahmedabad City of Gujarat State in India. A series of strain controled cyclic triaxial tests were carried out on isotropically compressed samples to study the influence of different parameters such as shear strain amplitude, initial effective confining pressure, relative density and percentage of non-plastic fines on the behavior of liquefaction and pore water pressure generation. It has been observed from the laboratory investigation that the potential for liquefaction of the sandy soils depends on the shear strain amplitude, initial relative density, initial effective confining pressure and non-plastic fines. In addition, an empirical relationship between pore pressure ratio and cycle ratio independent of the number of cycles of loading, relative density, confining pressure, amplitude of shear strain and non-plastic fines has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Texture evolution in a low cost beta titanium alloy was studied for different modes of rolling and heat treatments. The alloy was cold rolled by unidirectional and multi-step cross rolling. The cold rolled material was either aged directly or recrystallized and then aged. The evolution of texture in alpha and beta phases were studied. The rolling texture of beta phase that is characterized by the gamma fiber is stronger for MSCR than UDR; while the trend is reversed on recrystallization. The mode of rolling affects alpha transformation texture on aging with smaller alpha lath size and stronger alpha texture in UDR than in MSCR. The defect structure in beta phase influences the evolution of a texture on aging. A stronger defect structure in beta phase leads to variant selection with the rolled samples showing fewer variants than the recrystallized samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation into the dynamic strain ageing (DSA) of a wrought Ni-base superalloy 720Li was conducted. Characteristics of jerky, flow have been studied at intermediate temperatures of 350, 400 and 450 degrees C at strain-rates between 10(-3) and 10(-5) s(-1). Serrations of Type C are predominant within the temperature/strain-rate range explored. The major characteristics of the serrations-i.e. (a) critical plastic strain for onset of serrations, epsilon(c); (b) average stress decrement, Delta sigma(avg); and (c) strain increment between serrations. Delta epsilon(BS)-have been examined at selected temperatures and strain-rates. Negative strain-rate sensitivity was observed in the DSA regime. However. temperature did not influence tensile properties such as yield strength, ultimate strength. elongation, reduction in area, and work hardening rate or fracture features in DSA regime. Analysis of the results Suggests that locking of the mobile dislocations by substitutional alloying elements is responsible for the DSA in alloy 720Li.