151 resultados para storage media
em Indian Institute of Science - Bangalore - Índia
Resumo:
Now that crystals are being considered suitable for high density optical information storage, it is important to reduce the noise levels of retrieved images. The paper describes a simple technique to bring this about.
Resumo:
Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of similar to 0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed similar to 8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.
Resumo:
Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H-2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature. (C) 2013 AIP Publishing LLC.
Resumo:
A review of various contributions of first principles calculations in the area of hydrogen storage, particularly for the carbon-based sorption materials, is presented. Carbon-based sorption materials are considered as promising hydrogen storage media due to their light weight and large surface area. Depending upon the hybridization state of carbon, these materials can bind the hydrogen via various mechanisms, including physisorption, Kubas and chemical bonding. While attractive binding energy range of Kubas bonding has led to design of several promising storage systems, in reality the experiments remain very few due to materials design challenges that are yet to be overcome. Finally, we will discuss the spillover process, which deals with the catalytic chemisorption of hydrogen, and arguably is the most promising approach for reversibly storing hydrogen under ambient conditions.
Resumo:
Hydrogen storage capacity of Tin-1B (n = 3-7) clusters is studied and compared with that of the pristine Ti-n (n = 3-7), using density functional theory (DFT) based calculations. Among these clusters, Ti3B shows the most significant enhancement in the storage capacity by adsorbing 12 H-2, out of which three are dissociated and the other nine are stored as dihydrogen via Kubas-interaction. The best storage in Ti3B is owed to a large charge transfer from Ti to B along with the largest distance of Ti empty d-states above the Fermi level, which is a distinct feature of this particular cluster. Furthermore, the effect of substrates on the storage capacity of Ti3B was assessed by calculating the number of adsorbed H-2 on Ti-3 cluster anchored onto B atoms in the B-doped graphene, BC3, and BN substrates. Similar to free-standing Ti3B, Ti-3 anchored onto boron atom in BC3, stores nine di-hydrogen via Kubas interaction, at the same time eliminating the total number of non-useful dissociated hydrogen. Gibbs energy of adsorption as a function of H-2 partial pressure, indicated that at 250 K and 300 K the di-hydrogens on Ti-3@BC3 adsorb and desorb at ambient pressures. Importantly, Ti-3@BC3 avoids the clustering, hence meeting the criteria for efficient and reversible hydrogen storage media. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstructed the optical absorption coefficient mu(u) and particle diffusion coefficient D-B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g(2)(tau) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g(2)(tau) measure on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of mu(a), D-B, MSD and the viscoelastic parameters, which are presented, show reasonable good position and quantitative accuracy.
Resumo:
CD-ROMs have proliferated as a distribution media for desktop machines for a large variety of multimedia applications (targeted for a single-user environment) like encyclopedias, magazines and games. With CD-ROM capacities up to 3 GB being available in the near future, they will form an integral part of Video on Demand (VoD) servers to store full-length movies and multimedia. In the first section of this paper we look at issues related to the single- user desktop environment. Since these multimedia applications are highly interactive in nature, we take a pragmatic approach, and have made a detailed study of the multimedia application behavior in terms of the I/O request patterns generated to the CD-ROM subsystem by tracing these patterns. We discuss prefetch buffer design and seek time characteristics in the context of the analysis of these traces. We also propose an adaptive main-memory hosted cache that receives caching hints from the application to reduce the latency when the user moves from one node of the hyper graph to another. In the second section we look at the use of CD-ROM in a VoD server and discuss the problem of scheduling multiple request streams and buffer management in this scenario. We adapt the C-SCAN (Circular SCAN) algorithm to suit the CD-ROM drive characteristics and prove that it is optimal in terms of buffer size management. We provide computationally inexpensive relations by which this algorithm can be implemented. We then propose an admission control algorithm which admits new request streams without disrupting the continuity of playback of the previous request streams. The algorithm also supports operations such as fast forward and replay. Finally, we discuss the problem of optimal placement of MPEG streams on CD-ROMs in the third section.
Resumo:
Three new (dialkylamino)pyridine (DAAP)-based ligand amphiphiles 3-5 have been synthesized. All of the compounds possess a metal ion binding subunit in the form of a 2,6-disubstituted DAAP moiety. In addition, at least one ortho-CH2OH substituent is present in all the ligands. Complex formation by these ligands with various metal ions were examined under micellar conditions, but only complexes with Cu(II) ions showed kinetically potent esterolytic capacities under micellar conditions. Complexes with Cu(II) were prepared in host comicellar cetyltrimethylammonium bromide (CTABr) media at pH 7.6. Individual complexes were characterized by UV-visible absorption spectroscopy and electron paramagnetic resonance spectroscopy. These metallomicelles speed the cleavage of the substrates p-nitrophenyl hexanoate or p-nitrophenyl diphenyl phosphate. To ascertain the nature of the active esterolytic species, the stoichiometries of the respective Cu(II) complexes were determined from the kinetic version of Job's plot. In all the instances, 2:1 complex ligand/Cu(II) ion are the most kinetically competent species. The apparent pK(a) values of the Cu(II)-coordinated hydroxyl groups of the ligands 3, 4, and 5, in the comicellar aggregate, are 7.8, 8.0, and 8.0, respectively, as estimated from the rate constant vs pH: profiles of the ester cleavage reactions. The nucleophilic metallomicellar reagents and the second-order "catalytic" rate constants toward esterolysis of the substrate p-nitrophenyl hexanoate (at 25 degrees C, pH 7.6) are 37.5 for 3, 11.4 for 4, and 13.8 for 5. All catalytic systems comprising the coaggregates of 3, 4, or 5 and CTABr demonstrate turnover behavior in the presence of excess substrate.
Resumo:
Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.
Resumo:
We study by means of experiments and Monte Carlo simulations, the scattering of light in random media, to determine the distance up to which photons travel along almost undeviated paths within a scattering medium, and are therefore capable of casting a shadow of an opaque inclusion embedded within the medium. Such photons are isolated by polarisation discrimination wherein the plane of linear polarisation of the input light is continuously rotated and the polarisation preserving component of the emerging light is extracted by means of a Fourier transform. This technique is a software implementation of lock-in detection. We find that images may be recovered to a depth far in excess of that predicted by the diffusion theory of photon propagation. To understand our experimental results, we perform Monte Carlo simulations to model the random walk behaviour of the multiply scattered photons. We present a. new definition of a diffusing photon in terms of the memory of its initial direction of propagation, which we then quantify in terms of an angular correlation function. This redefinition yields the penetration depth of the polarisation preserving photons. Based on these results, we have formulated a model to understand shadow formation in a turbid medium, the predictions of which are in good agreement with our experimental results.
Resumo:
Protocols for secure archival storage are becoming increasingly important as the use of digital storage for sensitive documents is gaining wider practice. Wong et al.[8] combined verifiable secret sharing with proactive secret sharing without reconstruction and proposed a verifiable secret redistribution protocol for long term storage. However their protocol requires that each of the receivers is honest during redistribution. We proposed[3] an extension to their protocol wherein we relaxed the requirement that all the recipients should be honest to the condition that only a simple majority amongst the recipients need to be honest during the re(distribution) processes. Further, both of these protocols make use of Feldman's approach for achieving integrity during the (redistribution processes. In this paper, we present a revised version of our earlier protocol, and its adaptation to incorporate Pedersen's approach instead of Feldman's thereby achieving information theoretic secrecy while retaining integrity guarantees.
Resumo:
Two algorithms that improve upon the sequent-peak procedure for reservoir capacity calculation are presented. The first incorporates storage-dependent losses (like evaporation losses) exactly as the standard linear programming formulation does. The second extends the first so as to enable designing with less than maximum reliability even when allowable shortfall in any failure year is also specified. Together, the algorithms provide a more accurate, flexible and yet fast method of calculating the storage capacity requirement in preliminary screening and optimization models.
Resumo:
A pressed-plate Fe electrode for alkalines storage batteries, designed using a statistical method (fractional factorial technique), is described. Parameters such as the configuration of the base grid, electrode compaction temperature and pressure, binder composition, mixing time, etc. have been optimised using this method. The optimised electrodes have a capacity of 300 plus /minus 5 mA h/g of active material (mixture of Fe and magnetite) at 7 h rate to a cut-off voltage of 8.86V vs. Hg/HgO, OH exp 17 ref.
Resumo:
The photochemical and photophysical processes of many organic compounds are a function of the environment in which they are present. In this connection we have chosen to investigate the environmental perturbations on the photodimerization of coumarin,l and the results of our study in aqueous and micellar media are presented in this paper. Coumarin has historically been the subject of intense photochemical and spectroscopic interest, mainly as a consequence of its importance in biological systems. Coumarin has been chosen for our investigation as its fascinating photochemical behavior has been fairly well explored,2 and therefore the environmental influence, which is the subject of our concern, would be easily understandable.
Resumo:
In the paper new way of classifying spillways have been suggested. The various types, merits and demerits or existing spillway devices have been discussed. The considerations governing the choice of a design of a spillway have been mention. A criteria for working out the economics of spillway design has been suggested. An efficient surplus sing device has next been described and compared with other devices. In conclusion it has been suggested that the most efficient and at the same time economical arrangement will be a combination of devices. In conclusion it has been suggested will be a combination of crest gate, volute siphons and high head gates. The appendix gives a list of devices used in dams in various parts of the world.