91 resultados para spore-forming bacteria
em Indian Institute of Science - Bangalore - Índia
Resumo:
Epoxy resin GY250 representing diglycidyl ethers of bisphenol-A (DGEBA) was reinforced with 1, 3 and 5 wt % of surface functionalized silver nanoparticles (F-AgNPs) which were synthesized using Couroupita guianensis leaves extract with a view of augmenting the corrosion control property of the epoxy resin and also imparting antimicrobial activity to epoxy coatings on mild steel. Corrosion resistance of the coatings was evaluated by EIS, potentiodynamic polarization studies and cross scratch tests. AFM, SEM, HRTEM and EDX were utilized to investigate the surface topography, morphology and elemental composition of the coatings on MS specimens. Results showed that the corrosion resistance, hardness and T-g of the DGEBA/F-AgNPs coatings increased at 1 wt % of F-AgNPs. The DGEBA/F-AgNPs coatings also offered manifold antimicrobial protection to the MS surfaces by inhibiting the growth of biofilm forming bacteria like P. aeruginosa, B. subtilis, the most common human pathogen E. coli and the most virulent human pathogenic yeast C. albicans.
Resumo:
Friction has an important influence in metal forming operations, as it contributes to the success or otherwise of the process. In the present investigation, the effect of friction on metal forming was studied by simulating compression tests on cylindrical Al-Mg alloy using the finite element method (FEM) technique. Three kinds of compression tests were considered wherein a constant coefficient of friction was employed at the upper die-work-piece interface. However, the coefficient of friction between the lower die-work-piece interfaces was varied in the tests. The simulation results showed that a difference in metal flow occurs near the interfaces owing to the differences in the coefficient of friction. It was concluded that the variations in the coefficient of friction between the dies and the work-piece directly affect the stress distribution and shape of the work-piece, having implications on the microstructure of the material being processed.
Resumo:
Four Cu bearing alloys of nominal composition Zr25Ti25Cu50, Zr34Ti16Cu50, Zr25Hf25Cu50 and Ti25Hf25Cu50 have been rapidly solidified in order to produce ribbons. All the alloys become amorphous after meltspinning. In the Zr34Ti16Cu50 alloy localized precipitation of cF24 Cu5Zr phase can be observed in the amorphous matrix. The alloys show a tendency of phase separation at the initial stages of crystallization. The difference in crystallization behavior of these alloys with Ni bearing ternary alloys can be explained by atomic size, binary heat of mixing and Mendeleev number. It has been observed that both Laves and Anti-Laves phase forming compositions are suitable for glass formation. The structures of the phases, precipitated during rapid solidification and crystallization can be viewed in terms of Bernal deltahedra and Frank-Kasper polyhedra.
Resumo:
The glass transition, whereby liquids transform into amorphous solids at low temperatures, is a subject of intense research despite decades of investigation. Explaining the enormous increase in relaxation times of a liquid upon supercooling is essential for understanding the glass transition. Although many theories, such as the Adam-Gibbs theory, have sought to relate growing relaxation times to length scales associated with spatial correlations in liquid structure or motion of molecules, the role of length scales in glassy dynamics is not well established. Recent studies of spatially correlated rearrangements of molecules leading to structural relaxation, termed ``spatially heterogeneous dynamics,'' provide fresh impetus in this direction. A powerful approach to extract length scales in critical phenomena is finite-size scaling, wherein a system is studied for sizes traversing the length scales of interest. We perform finite-size scaling for a realistic glass-former, using computer simulations, to evaluate the length scale associated with spatially heterogeneous dynamics, which grows as temperature decreases. However, relaxation times that also grow with decreasing temperature do not exhibit standard finite-size scaling with this length. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode-coupling theory. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions.
Resumo:
The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.
Resumo:
Alamethicin and several related microbial polypeptides, which contain a high proportion of agr-aminoisobutyric acid (Aib) residues, possess the ability to modify the permeability properties of phospholipid bilayer membranes. Alamethicin induces excitability phenomena in model membranes and has served as an excellent model for the study of voltage sensitive transmembrane channels. This review summarizes various aspects of the structural chemistry and membrane modifying properties of alamethicin and related Alb containing peptides. The presence of Aib residues in these sequences, constrains the polypeptides to 310 or agr-helical conformations. Functional membrane channels are formed by aggregation of cylindrical peptide helices, which span the lipid bilayer, forming a scaffolding for an aqueous column across the membrane. After consideration of the available data on the conductance characteristics of alamethicin channels, a working, hypothesis for a channel model is outlined. Channel aggregates in the lipid phase may be stabilized by intermolecular hydrogen bonding, involving a central glutamine residue and also by interactions between the macro-dipoles of proximate peptide helices. Fluctuations between different conductance states are rationalized by transitions between states of different aggregation and hence altered dimensions of the aqueous core or by changes in net dipole moment of the aggregate. Ion fluxes through the channel may also be affected by the electric field within the aqueous core.
Resumo:
The suzukacillin fragments, Boc-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (14), Boc-Ala-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (16G) and the completely apolar 16-residue peptide in which the glutamine residue has been replaced by alanine (16A) have been studied by 270 MHz 1H-HMR, in C2HCl3 and (C2H3)2SO solution. Intramolecularly hydrogen-bonded NH groups have been identified by temperature and solvent dependence of chemical shifts. Peptides 14 and 16A adopt folded 310 helical conformations stabilized by 11 and 13 hydrogen bonds, respectively. In peptide 16G there are 12 intramolecular hydrogen bonds, with the glycine NH being solvent-exposed, in contrast to 14 and 16A.
Resumo:
The crystal structures of three pentapeptide fragments of suzukacillin-A have been determined. Boc-Aib-Pro-Val-Aib-Val-OMe (peptide 1–5) adopts a distorted helical conformation, stabilized by three intramolecular hydrogen bonds (two 5→1, one 4→1). Boc-Ala-Aib-Ala-Aib-Aib-OMe (peptide 6–10) and Boc-Leu-Aib-Pro-Val-Aib-OMe (peptide 16–20) adopt 310 helical structures stabilized by three and two 4→1 intramolecular hydrogen bonds, respectively. These structures provide substantial support for a largely helical conformation for the suzukacillin membrane channel.
Resumo:
High concentration of L-cystine (0.25%) when present in a glucose-mineral salt medium inhibited sporulation-specific events like protease production, calcium uptake and dipicolinic acid synthesis inBacillus thuringiensis var.thuringiensis. In addition, the enzymes of the Krebs cycle from aconitase onwards were completely inhibited by a high concentration of cystine. At a low concentration of cystine (0.05%), none of the above mentioned macromolecular changes were affected. Lipid synthesis monitored by [1,214 C]-acetate incorporation into lipid as well as into whole cells was completely inhibited.
Resumo:
The effect of the addition of different concentratons of cystine and cysteine on sporulation and parasporal crystal formation in Bacillus thuringiensis var. thuringiensis was studied. The effect was well pronounced when the systine/cysteine additions were made after the stationary phase. Heat stable spores and crystals were formed when the culture was provided with a low concentration of cystine/cysteine (0.05 per cent w/v). At a moderate concentration of cystine or cysteine (0.15%), only heat labile spores were formed without the production of the crystal. When the cystine/cysteine concentration was high (0.25%), spore and crystal formation were completely inhibited. Partial reversal of inhibition of sporulation was brought about by sodium sulphate or zinc sulphate and lead, copper, cadmium or cobalt acetate at 0.2 mM or at 0.2% of sodium or potassium pyruvate, citrate, isaconitate, oxalosuccinate, ∝ -keto-glutarate, succinate, fumarate, malate, or oxalacetate. Glutamate (0.2%) overcame the inhibitory effect of cystine/cysteine completely. The structural changes observed using phase contrast microscopy were dependent upon the concentration of cystine/cysteine.
Resumo:
The growth patterns of Mycobacterium smegmatis SN2 in a minimal medium and in nutrient broth have been compared. The growth was monitored by absorbancy (Klett readings), colony forming units, wet weight and content of DNA, RNA and protein. During the early part of the growth cycle, the bacteria had higher wet weight and macromolecular content in nutrient broth than in minimal media. During the latter half of the growth cycle however, biosynthesis stopped much earlier in nutrient broth and the bacteria had a much lower content of macromolecules than in the minimal medium. In both the media, a general pattern of completing biosynthesis rapidly in the initial phase and a certain amount of cell division at a later time involving the distribution of preformed macromolecules was seen. The possible adaptive significance of this observation has been discussed.
Resumo:
Mycobacterium smegmatis topoisomerase I exhibits several distinctive characteristics among all topoisomerases. The enzyme is devoid of Zn2+fingers found typically in other bacterial type I topoisomerases and binds DNA in a site-specific manner. Using polyclonal antibodies, we demonstrate the high degree of relatedness of the enzyme across mycobacteria but not other bacteria. This absence of cross-reactivity from other bacteria indicates that mycobacterial topoisomerase I has diverged from Escherichia coli and other bacteria. We have investigated further the immunological properties of the enzyme by raising a panel of monoclonal antibodies that recognises different antigenically active regions of the enzyme and binds it with widely varied affinity. Inhibition of a C-terminal domain-specific antibody binding by enzyme-specific and non-specific oligonucleotides suggests the possibility of using these monoclonal antibodies to probe the structure, function and in vivo role of the enzyme.
Resumo:
A generalized Gierer-Meinhardt model has been used to account for the transplantation experiments in Hydra. In this model, a cross inhibition between the two organizing centres (namely, head and foot) are assumed to be the only mode of interaction in setting up a stable morphogen distribution for the pattern formation in Hydra.
Resumo:
Acetone powders prepared from leaf extracts of Tecoma stans L. were found to catalyze the oxidation of catechol to 3,4,3',4'-tetrahydroxydiphenyl. Fractionation of the acetone powders obtained from Tecoma leaves with acetone, negative adsorption of the acetone fraction with tricalcium phosphate gel, and chromatography of the gel supernatant on DEAE-Sephadex yielded a 68-fold purified enzyme with 66% recovery. The enzyme had an optimum pH around 7.2. It showed a temperature optimum of 30° and the Km for catechol was determined as 2 x 10-4 m. The purified enzyme moved as a single band on polyacrylamide gel electrophoresis. Its activity was found to be partially stimulated by Mg2+. The reaction was not inhibited by o-phenanthroline and agr,agr'-dipyridyl. The purified enzyme was highly insensitive to a range of copper-chelating agents. It was not affected appreciably by thiol inhibitors. The reaction was found to be suppressed to a considerable extent by reducing agents like GSH, cysteine, cysteamine, and ascorbic acid. The purified enzyme was remarkably specific for catechol. Catalase affected neither the enzyme activity nor the time course of the reaction. Hydrogen peroxide was not formed as a product of the reaction.
Resumo:
Forty-one cultures degrading and assimilating oxalate were isolated from chicken dung. Characterization indicated six different types. One of these belonged to the genusAlcaligenes hitherto never reported to degrade oxalate. Three groups ofPseudomonas strains differed physiologically from strains already known.