29 resultados para sound equipment
em Indian Institute of Science - Bangalore - Índia
Resumo:
The normal-mode solution to the problem of acoustic wave propagation in an isovelocity ocean with a wavy surface is considered. The surface wave amplitude is assumed to be small compared to the acoustic wavelength, and the method of multiple scales is employed to study the interaction between normal-mode acoustic waves and the surface waves. A nonresonant interaction causes small fluctuations of the amplitude and phase of the acoustic wave at a rate dependent on the frequency of the surface wave. Backscatter occurs if the wavenumber of the surface wave is larger than that of the acoustic wave. The interaction becomes resonant if appropriate phase-matching conditions are satisfied. In this case, two acoustic normal modes get coupled, resulting in a large-scale periodic exchange of energy from one mode to another.
Resumo:
The Landau damping of sound wave in a plasma consisting of an ensemble of magnetic flux tubes with reference to the work by Ryutov and Ryutova (1976) is discussed. Sound waves cannot be Landau damped in general but under certain restriction conditions on plasma parameters the possibility of absorption of these waves can exist.
Resumo:
The decay of sound in a rectangular room is analyzed for various boundary conditions on one of its walls. It is shown that the decay of the sound-intensity level is in general nonlinear. But for specific areas and impedances of the material it is possible to obtain a linear initial decay. It is also shown that the coefficients derived from the initial decay rates neither correspond to the predictions of Sabine's or Eyring's geometrical theories nor to the normal coefficients of Morse's wave theory. The dependence of the coefficients on the area of the material is discussed. The influence of the real and the imaginary parts of the specific acoustic impedance of the material on the coefficients is also discussed. Finally, the existence of a linear initial decay corresponding to the decay of a diffuse field in the case of a highly absorbing material partially covering a wall is explained on the basis of modal coupling.
Resumo:
The decay of sound in a rectangular room is analyzed for various boundary conditions on one of its walls. It is shown that the decay of the sound-intensity level is in general nonlinear. But for specific areas and impedances of the material it is possible to obtain a linear initial decay. It is also shown that the coefficients derived from the initial decay rates neither correspond to the predictions of Sabine's or Eyring's geometrical theories nor to the normal coefficients of Morse's wave theory. The dependence of the coefficients on the area of the material is discussed. The influence of the real and the imaginary parts of the specific acoustic impedance of the material on the coefficients is also discussed. Finally, the existence of a linear initial decay corresponding to the decay of a diffuse field in the case of a highly absorbing material partially covering a wall is explained on the basis of modal coupling.
Resumo:
The stochastic version of Pontryagin's maximum principle is applied to determine an optimal maintenance policy of equipment subject to random deterioration. The deterioration of the equipment with age is modelled as a random process. Next the model is generalized to include random catastrophic failure of the equipment. The optimal maintenance policy is derived for two special probability distributions of time to failure of the equipment, namely, exponential and Weibull distributions Both the salvage value and deterioration rate of the equipment are treated as state variables and the maintenance as a control variable. The result is illustrated by an example
Resumo:
Some improvements are suggested to Schroeder's scheme [J. Acoust. Soc. Am. 57, 149–150 (1975)] of achieving diffuse sound reflection in concert halls.Subject Classification
Resumo:
Volumetric method based adsorption measurements of nitrogen on two specimens of activated carbon (Fluka and Sarabhai) reported by us are refitted to two popular isotherms, namely, Dubunin−Astakhov (D−A) and Toth, in light of improved fitting methods derived recently. Those isotherms have been used to derive other data of relevance in design of engineering equipment such as the concentration dependence of heat of adsorption and Henry’s law coefficients. The present fits provide a better representation of experimental measurements than before because the temperature dependence of adsorbed phase volume and structural heterogeneity of micropore distribution have been accounted for in the D−A equation. A new correlation to the Toth equation is a further contribution. The heat of adsorption in the limiting uptake condition is correlated with the Henry’s law coefficients at the near zero uptake condition.
Resumo:
Objective To perform spectral analysis of noise generated by equipments and activities in a level III neonatal intensive care unit (NICU) and measure the real time sequential hourly noise levels over a 15 day period. Methods Noise generated in the NICU by individual equipments and activities were recorded with a digital spectral sound analyzer to perform spectral analysis over 0.5–8 KHz. Sequential hourly noise level measurements in all the rooms of the NICU were done for 15 days using a digital sound pressure level meter. Independent sample t test and one way ANOVA were used to examine the statistical significance of the results. The study has a 90% power to detect at least 4 dB differences from the recommended maximum of 50 dB with 95 % confidence. Results The mean noise levels in the ventilator room and stable room were 19.99 dB (A) sound pressure level (SPL) and 11.81 dB (A) SPL higher than the maximum recommended of 50 dB (A) respectively (p < 0.001). The equipments generated 19.11 dB SPL higher than the recommended norms in 1–8 KHz spectrum. The activities generated 21.49 dB SPL higher than the recommended norms in 1–8 KHz spectrum (p< 0.001). The ventilator and nebulisers produced excess noise of 8.5 dB SPL at the 0.5 KHz spectrum.Conclusion Noise level in the NICU is unacceptably high. Spectral analysis of equipment and activity noise have shown noise predominantly in the 1–8 KHz spectrum. These levels warrant immediate implementation of noise reduction protocols as a standard of care in the NICU.
Resumo:
Close to the Mott transition, lattice degrees of freedom react to the softening of electron degrees of freedom. This results in a change of lattice spacing, a diverging compressibility, and a critical anomaly of the sound velocity. These effects are investigated within a simple model, in the framework of dynamical mean-field theory. The results compare favorably to recent experiments on the layered organic-conductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl. We predict that effects of a similar magnitude are expected for V2O3, despite the much larger value of the elastic modulus of this material.
Corresponding States Correlations For Sound-Velocity In Saturated Cryogenic Liquids And Refrigerants
Resumo:
The absorption produced by the audience in concert halls is considered a random variable. Beranek's proposal [L. L. Beranek, Music, Acoustics and Architecture (Wiley, New York, 1962), p. 543] that audience absorption is proportional to the area they occupy and not to their number is subjected to a statistical hypothesis test. A two variable linear regression model of the absorption with audience area and residual area as regressor variables is postulated for concert halls without added absorptive materials. Since Beranek's contention amounts to the statement that audience absorption is independent of the seating density, the test of the hypothesis lies in categorizing halls by seating density and examining for significant differences among slopes of regression planes of the different categories. Such a test shows that Beranek's hypothesis can be accepted. It is also shown that the audience area is a better predictor of the absorption than the audience number. The absorption coefficients and their 95% confidence limits are given for the audience and residual areas. A critique of the regression model is presented.