19 resultados para solar air-conditioning
em Indian Institute of Science - Bangalore - Índia
Resumo:
The purpose of this article is to report the experience of design and testing of orifice plate-based flow measuring systems for evaluation of air leakages in components of air conditioning systems. Two of the flow measuring stations were designed with a beta value of 0.405 and 0.418. The third was a dual path unit with orifice plates of beta value 0.613 and 0.525. The flow rates covered with all the four were from 4-94 l/s and the range of Reynolds numbers is from 5600 to 76,000. The coefficients of discharge were evaluated and compared with the Stolz equation. Measured C-d values are generally higher than those obtained from the equation, the deviations being larger in the low Reynolds number region. Further, it is observed that a second-degree polynomial is inadequate to relate the pressure drop and flow rate. The lower Reynolds number limits set by standards appear to be somewhat conservative.
Resumo:
Modifications made in a solar air collector inlet duct to achieve uniform velocity of air in the absorber duct are described. Measurements of temperature and pressure at various points in the duct gave information on the distribution of air in the absorber duct. A thermal performance test conducted on the collector with a vaned diffuser showed some significant improvement compared with a diffuser without vanes.
Resumo:
Three types of conventional solar air heater are designed such that their heat absorbing areas and the pressure drops across them are equal for equal air mass flow rates per unit collector area. The results of thermal performance tests conducted simultaneously on these collectors, under the same environmental conditions, are presented.
Resumo:
In this article, we describe our ongoing efforts in addressing the environment and energy challenges facing the world today. Tapping solar thermal energy seems to be the right choice for a country like India. We look at three solar-thermal technologies in the laboratory — water purification/distillation, Stirling engine, and air-conditioning/refrigeration.
Resumo:
Sugganahalli, a rural vernacular community in a warm-humid region in South India, is under transition towards adopting modern construction practices. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete (RCC)/tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Vernacular architecture evolves adopting local resources in response to the local climate adopting passive solar designs. This paper investigates the effectiveness of passive solar elements on the indoor thermal comfort by adopting modern climate-responsive design strategies. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Age-old traditional design considerations were found to concur with modern understanding into bio-climatic response and climate-responsiveness. Modern transitions were found to increase the average indoor temperatures in excess of 7 degrees C. Such transformations tend to shift the indoor conditions to a psychrometric zone that is likely to require active air-conditioning. Also, the surveyed thermal sensation votes were found to lie outside the extended thermal comfort boundary for hot developing countries provided by Givoni in the bio-climatic chart.
Resumo:
Control of flow in duct networks has a myriad of applications ranging from heating, ventilation, and air-conditioning to blood flow networks. The system considered here provides vent velocity inputs to a novel 3-D wind display device called the TreadPort Active Wind Tunnel. An error-based robust decentralized sliding-mode control method with nominal feedforward terms is developed for individual ducts while considering cross coupling between ducts and model uncertainty as external disturbances in the output. This approach is important due to limited measurements, geometric complexities, and turbulent flow conditions. Methods for resolving challenges such as turbulence, electrical noise, valve actuator design, and sensor placement are presented. The efficacy of the controller and the importance of feedforward terms are demonstrated with simulations based upon an experimentally validated lumped parameter model and experiments on the physical system. Results show significant improvement over traditional control methods and validate prior assertions regarding the importance of decentralized control in practice.
Resumo:
Surface composition and depth profile studies of hemiplated thin film CdS:CuzS solar cells have been carried out using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) techniques. These studies indicate that the junction is fairly diffused in the as-prepared cell. However, heat treatment of the cell at 210°C in air relatively sharpens the junction and improves the cell performance. Using the Cu(2p3p)/S(2p) ratio as well as the Cu(LVV)/(LMM) Auger intensity ratio, it can be inferred that the nominal valency of copper in the layers above the junction is Cut and it is essentially in the CUSS form. Copper signals are observed from layers deep down in the cell. These seem to appear mostly from the grain boundary region. From the observed concentration of Cd, Cu and S in these deeper layers and the Cu(LVV)/(LMM) ratio it appears that the signals from copper essentially originate partly from copper in CuS and partly from Cu2t trapped in the lattice. It is significant to note that the nominal valence state of copper changes rather abruptly from Cut to Cuz+ across the junction.
Resumo:
Atmospheric perturbations due to the annular solar eclipse were monitored to understand its influence on the meteorological parameters from surface to the lower stratosphere. A strong inversion at 13 km and an abnormal warming in the upper troposphere were noticed on the eclipse day. A decrease in tropopause height associated with increase in temperature caused anomalous warming. Considerable attenuation of incoming solar radiation resulted in abrupt increase of air temperature during the next 24 h followed by sharp decrease in relative humidity. The time lag is attributed to the distance from the totality and the response time between tropopause and surface layer. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present here, an experimental set-up developed for the first time in India for the determination of mixing ratio and carbon isotopic ratio of air-CO2. The set-up includes traps for collection and extraction of CO2 from air samples using cryogenic procedures, followed by the measurement of CO2 mixing ratio using an MKS Baratron gauge and analysis of isotopic ratios using the dual inlet peripheral of a high sensitivity isotope ratio mass spectrometer (IRMS) MAT 253. The internal reproducibility (precision) for the PC measurement is established based on repeat analyses of CO2 +/- 0.03 parts per thousand. The set-up is calibrated with international carbonate and air-CO2 standards. An in-house air-CO2 mixture, `OASIS AIRMIX' is prepared mixing CO2 from a high purity cylinder with O-2 and N-2 and an aliquot of this mixture is routinely analyzed together with the air samples. The external reproducibility for the measurement of the CO2 mixing ratio and carbon isotopic ratios are +/- 7 (n = 169) mu mol.mol(-1) and +/- 0.05 (n = 169) parts per thousand based on the mean of the difference between two aliquots of reference air mixture analyzed during daily operation carried out during November 2009-December 2011. The correction due to the isobaric interference of N2O on air-CO2 samples is determined separately by analyzing mixture of CO2 (of known isotopic composition) and N2O in varying proportions. A +0.2 parts per thousand correction in the delta C-13 value for a N2O concentration of 329 ppb is determined. As an application, we present results from an experiment conducted during solar eclipse of 2010. The isotopic ratio in CO2 and the carbon dioxide mixing ratio in the air samples collected during the event are different from neighbouring samples, suggesting the role of atmospheric inversion in trapping the emitted CO2 from the urban atmosphere during the eclipse.
Resumo:
Simulations using Ansys Fluent 6.3.26 have been performed to look into the adsorption characteristics of a single silica gel particle exposed to saturated humid air streams at Re=108 & 216 and temperature of 300K. The adsorption of the particle has been modeled as a source term in the species and the energy equations using a Linear Driving Force (LDF) equation. The interdependence of the thermal and the water vapor concentration field has been analysed. This work is intended to aid in understanding the adsorption effects in silica gel beds and in their efficient design. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Resumo:
Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).
Resumo:
Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
Improving access to safe drinking water can result in multi-dimensional impacts on people's livelihood. This has been aptly reflected in the Millennium Development Goals (MDG) as one of the major objectives. Despite the availability of diverse and complex set of technologies for water purification, pragmatic and cost-effective use of the same is impeding the use of available sources of water. Hence, in country like India simple low-energy technologies such as solar still are likely to succeed. Solar stills would suffice the basic minimum drinking water requirements of man. Solar stills use sunlight, to kill or inactivate many, if not all, of the pathogens found in water. This paper provides an integrated assessment of the suitability of domestic solar still as a viable safe water technology for India. Also an attempt has been made to critically assess the operational feasibility and costs incurred for using this technology in rural India.