52 resultados para soil dissolved C pool

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertical uplift resistance of a group of two horizontal coaxial strip anchors, embedded in a general c-phi soil (where c is the unit cohesion and phi is the soil friction angle), has been determined by using the lower bound finite element limit analysis. The variation of uplift factors F-c and F-gamma, due to the components of soil cohesion and unit weight, respectively, with changes in depth (H)/width (B) has been established for different values of vertical spacing (S)/B. As compared to a single isolated anchor, the group of two anchors provides a significantly greater magnitude of F-c for phi <= 20 degrees and with H/B >= 3. The magnitude of F-c becomes almost maximum when S/B is kept closer to 0.5H/B. On the other hand, with the same H/B, as compared to a single anchor, hardly any increase in F-gamma occurs for a group of two anchors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stabilised soil products such as stabilised soil blocks, rammed earth and stabilised adobe are being used for building construction since the last 6-7 decades. Major advantages of stabilised soil products include low embodied carbon, use of local materials, decentralized production, and easy to adjust the strength, texture, size and shape. Portland cement and lime represent the most commonly used stabilisers for stabilised soil products. The mechanism of strength development in cement and lime stabilised soils is distinctly different. The paper presents results of scientific investigations pertaining to the status of clay minerals in the 28 day cured cement and lime stabilised soil compacts. XRD, SEM imaging, grain size distribution and Atterberg's limits of the ground stabilised soil products and the natural soil were determined. Results reveal that clay minerals can be retrieved from cement stabilised soil products, whereas in lime stabilised soil products clay minerals get consumed in the lime-clay reactions and negligible percentage of clay minerals are left in the stabilised soil compacts. The results of the present investigation clearly demonstrate that cement stabilisation is superior to lime stabilisation in retrieving the clay minerals from the stabilised soil compacts. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertical uplift resistance of two interfering rigid strip plate anchors embedded horizontally at the same level in clay has been examined. The lower and upper bound theorems of the limit analysis in combination with finite-elements and linear optimization have been employed to compute the failure load in a bound form. The analysis is meant for an undrained condition and it incorporates the increase of cohesion with depth. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (eta c gamma) resulting from the combined components of soil cohesion (c) and soil unit weight (gamma), has been computed for different values of embedment ratio (H/B), the rate of linear increase of cohesion with depth (m) and normalized unit weight (gamma H/c). The magnitude of eta c gamma has been found to reduce continuously with a decrease in the spacing between the anchors, and the uplift resistance becomes minimum for S/B=0. It has been noted that the critical spacing between the anchors required to eliminate the interference effect increases continuously with (1) an increase in H/B, and (2) a decrease in m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proportion of chemical elements passing through vegetation prior to being exported in a stream was quantified for a forested tropical watershed(Mule Hole, South India) using an extensive hydrological and geochemical monitoring at several scales. First, a solute annual mass balance was established at the scale of the soil-plant profile for assessing the contribution of canopy interaction and litter decay to the solute fluxes of soil inputs (overland flow) and soil outputs (pore water flow as seepages). Second, based on the respective contributions of overland flow and seepages to the stream flow as estimated by a hydrological lumped model, we assigned the proportion of chemical elements in the stream that transited through the vegetation at both flood event (End Member Mixing Analysis) and seasonal scales. At the scale of the 1D soil-plant profile, leaching from the canopy constituted the main source of K above the ground surface. Litter decay was the main source of Si, whereas alkalinity, Ca and Mg originated in the same proportions from both sources. The contribution of vegetation was negligible for Na. Within the soil, all elements but Na were removed from the pore water in proportions varying from 20% for Cl to 95% for K: The soil output fluxes corresponded to a residual fraction of the infiltration fluxes. The behavior of K, Cl, Ca and Mg in the soil-plant profile can be explained by internal cycling, as their soil output fluxes were similar to the atmospheric inputs. Na was released from soils as a result of Na-plagioclase weathering and accompanied by additional release of Si. Concentration of soil pore water by evapotranspiration might limit the chemical weathering in the soil. Overall, the solute K, Ca, Mg, alkalinity and Si fluxes associated with the vegetation turnover within the small experimental watershed represented 10-15 times the solute fluxes exported by the stream, of which 83-97% transited through the vegetation. One important finding is that alkalinity and Si fluxes at the outlet were not linked to the ``current weathering'' of silicates in this watershed. These results highlight the dual effect of the vegetation cover on the solute fluxes exported from the watershed: On one hand the runoff was limited by evapotranspiration and represented only 10% of the annual rainfall, while on the other hand, 80-90% of the overall solute flux exported by the stream transited through the vegetation. The approach combining geochemical monitoring and accurate knowledge of the watershed hydrological budget provided detailed understanding of several effects of vegetation on stream fluxes: (1) evapotranspiration (limiting), (2) vertical transfer through vegetation from vadose zone to ground surface (enhancing) and (3) redistribution by throughfalls and litter decay. It provides a good basis for calibrating geochemical models and more precisely assessing the role of vegetation on soil processes. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By using the lower bound limit analysis in conjunction with finite elements and linear programming, the bearing capacity factors due to cohesion, surcharge and unit weight, respectively, have been computed for a circular footing with different values of phi. The recent axisymmetric formulation proposed by the authors under phi = 0 condition, which is based on the concept that the magnitude of the hoop stress (sigma(theta)) remains closer to the least compressive normal stress (sigma(3)), is extended for a general c-phi soil. The computational results are found to compare quite well with the available numerical results from literature. It is expected that the study will be useful for solving various axisymmetric geotechnical stability problems. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By using an axisymmetric lower bound finite element limit analysis formulation, the stability numbers (gamma H/C) for an unsupported vertical circular excavation in a cohesive-frictional soil have been generated. The numerical results are obtained for values of normalized excavation height (H/b) and friction angle (phi) greater than those considered previously in the literature. The results compare well with those available in literature. The stability numbers presented in this note would be beneficial from a design point of view. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

River water composition (major ion and Sr-87/Sr-86 ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L-1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L-1), with radiogenic Sr-87/Sr-86 isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and Sr-87/Sr-86 and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and Sr-87/Sr-86 isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and Sr-87/Sr-86 isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used fbr masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erosion resistance of pressed soil blocks used for wall construction is discussed. The spray erosion test using a standardized shower spray is discussed. Spray erosion behaviour of pressed soil blocks made out of five different soils is presented. Results of laboratory and field tests are compared. Effect of clay content of the soil and density of the pressed soil block on erosion are discussed. Also the effect of water-proof coatings on erosion of soil blocks is presented. Erosion resistance of soil blocks stabilized with organic (jaggery syrup and starch) or inorganic binders is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elemental sulphur (in wet precipitated form or dissolved in organic solvents) and hydrogen sulphide have been determined gravimetrically at room temperature by conversion into copper sulphide by elemental copper in presence of an organic solvent such as benzene or acetonitrile. Any solvent in which sulphur is soluble can be used. The black copper sulphide formed can be weighed or determined iodometrically. Analysis indicates the black compound to be Cu1.8S. This room temperature method is a versatile one-step procedure sensitive to microgram or macro amounts of sulphur. It has been used for determining the solubility of sulphur in tetrahydrofuran and dioxan. The apparent heat of solution indicates that sulphur dissolves in these solvents without any marked solute—solvent interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bearing capacity factor N-c for axially loaded piles in clays whose cohesion increases linearly with depth has been estimated numerically under undrained (phi=0) condition. The Study follows the lower bound limit analysis in conjunction With finite elements and linear programming. A new formulation is proposed for solving an axisymmetric geotechnical stability problem. The variation of N-c with embedment ratio is obtained for several rates of the increase of soil cohesion with depth; a special case is also examined when the pile base was placed on the stiff clay stratum overlaid by a soft clay layer. It was noticed that the magnitude of N-c reaches almost a constant value for embedment ratio greater than unity. The roughness of the pile base and shaft affects marginally the magnitudes of N-c. The results obtained from the present study are found to compare quite well with the different numerical solutions reported in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation dealing with the influence of stress path on the shear behaviour of a layered soil prepared in the laboratory is described. Specimens trimmed in vertical and horizontal directions have been sheared under three different stress paths in compression and extension tests. Either in compression or extension, the stress–strain behaviour of the specimens with both orientations was apparently the same, although the volume change behaviour was different. The effective stress parameters C′ and ′ were found to be unique and independent of the stress path and two principal orientations. However, the values of ′ in extension tests were 6–7° higher than those in compression tests.