53 resultados para simple systems
em Indian Institute of Science - Bangalore - Índia
Resumo:
The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and each other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.
Resumo:
Precipitation in small droplets involving emulsions, microemulsions or vesicles is important for Producing multicomponent ceramics and nanoparticles. Because of the random nature of nucleation and the small number of particles in a droplet, the use of a deterministic population balance equation for predicting the number density of particles may lead to erroneous results even for evaluating the mean behavior of such systems. A comparison between the predictions made through stochastic simulation and deterministic population balance involving small droplets has been made for two simple systems, one involving crystallization and the other a single-component precipitation. The two approaches have been found to yield quite different results under a variety of conditions. Contrary to expectation, the smallness of the population alone does not cause these deviations. Thus, if fluctuation in supersaturation is negligible, the population balance and simulation predictions concur. However, for large fluctuations in supersaturation, the predictions differ significantly, indicating the need to take the stochastic nature of the phenomenon into account. This paper describes the stochastic treatment of populations, which involves a sequence of so-called product density equations and forms an appropriate framework for handling small systems.
Resumo:
The time dependent response of a polar solvent to a changing charge distribution is studied in solvation dynamics. The change in the energy of the solute is measured by a time domain Stokes shift in the fluorescence spectrum of the solute. Alternatively, one can use sophisticated non-linear optical spectroscopic techniques to measure the energy fluctuation of the solute at equilibrium. In both methods, the measured dynamic response is expressed by the normalized solvation time correlation function, S(t). The latter is found to exhibit uniquefeatures reflecting both the static and dynamic characteristics of each solvent. For water, S(t) consists of a dominant sub-50 fs ultrafast component, followed by a multi-exponential decay. Acetonitrile exhibitsa sub-100 fs ultrafast component, followed by an exponential decay. Alcohols and amides show features unique to each solvent and solvent series. However, understanding and interpretation of these results have proven to be difficult, and often controversial. Theoretical studiesand computer simulations have greatly facilitated the understanding ofS(t) in simple systems. Recently solvation dynamics has been used extensively to explore dynamics of complex systems, like micelles and reverse micelles, protein and DNA hydration layers, sol-gel mixtures and polymers. In each case one observes rich dynamical features, characterized again by multi-exponential decays but the initial and final time constants are now widely separated. In this tutorial review, we discuss the difficulties in interpreting the origin of the observed behaviour in complex systems.
Resumo:
Star formation properties in Giant Extragalactic H II Regions (GEHRs) are investigated using optical photometry and evolutionary population synthesis models. Photometric data in $BVR$ bands and in the emission line of H-alpha are obtained by CCD imaging at Vainu Bappu Observatory, Kavalur. Aperture photometry is performed for 180 GEHRs in galaxies NGC 1365, 1566, 2366, 2903, 2997, 3351, 4303, 4449, 4656 and 5253. Thirty six of these GEHRs having published spectroscopic data are studied for star formation properties. The population synthesis model is constructed based on Maeder's stellar evolutionary and Kurucz stellar atmosphere models, to synthesize observational quantities of embedded clusters in GEHRs. The observed H-alpha luminosity is a measure of the number of massive stars while the contribution to BVR bands is from intermediate mass (5-15 solar mass) stars when the cluster is young and from evolving supergiants when the cluster is old (age >/= 6~Myr). Differential reddening between gas and embedded stars is essential to constrain the dereddened cluster colors within the range of youngest clusters. Obscuring dust closely associated with gas, which is distributed in filaments and clumps, as in the case of 30 Doradus, is the most likely configuration giving rise to net reduction of extinction towards stars. The fraction of the stellar photons escaping the nebula unattenuated is estimated to be 50%. GEHRs are rarely found to be simple systems containing stars from single generation. In the present sample such regions in addition to being older than 3~Myr, have their Lyman continuum luminosity reduced by as much as 60%, compared to the observed $B$ band luminosity for a normal IMF. The missing ionizing photons may be escaping the nebula, leading to the ionization of extra-H II region ionized medium. Co-existence of young (age = 5 Myr; stars producing ionizing photons) and old populations (~10~Myr; Red Supergiants) is found to be common in GEHRs. The emission and continuum knots are seen spatially separated (40-100 pc) on CCD images in NGC 2997, 4303 and 4449 and may be direct evidences for the co-existence of young and old populations in giant star forming complexes. Triggering of star formation from earlier bursts is the most likely cause of new generation of stars, and may be a common phenomenon in GEHRs. Spatial separation between the young and old stars (~30 pc) had been earlier reported in 30 Doradus. Thus GEHRs in nearby galaxies share many of the properties shown by 30 Dor, the nearest GEHR. (SECTION: Dissertation Summaries)
Resumo:
The use of two liquid crystals as solvents in the determination of molecular structure has been demonstrated for systems which do not provide structural information from studies in a single solvent owing to the fact that the spectra are deceptively simple, with the result that all the spectral parameters cannot be derived with reasonable precision. The specific system studied was 2-(p-bromophenyl)-4,6-dichloropyrimidine, for which relative inter-proton discances have been determined from the proton NMR spectra in two nematic solvents.
Resumo:
Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper presents three methodologies for determining optimum locations and magnitudes of reactive power compensation in power distribution systems. Method I and Method II are suitable for complex distribution systems with a combination of both radial and ring-main feeders and having different voltage levels. Method III is suitable for low-tension single voltage level radial feeders. Method I is based on an iterative scheme with successive powerflow analyses, with formulation and solution of the optimization problem using linear programming. Method II and Method III are essentially based on the steady state performance of distribution systems. These methods are simple to implement and yield satisfactory results comparable with the results of Method I. The proposed methods have been applied to a few distribution systems, and results obtained for two typical systems are presented for illustration purposes.
Resumo:
Current-potential relationships are derived for small-amplitude periodic inputs for linear electrochemical systems using a Fourier synthesis procedure. Specific results have been obtained for a triangular potential waveform for two simple model systems.
Resumo:
The paper deals with the basic problem of adjusting a matrix gain in a discrete-time linear multivariable system. The object is to obtain a global convergence criterion, i.e. conditions under which a specified error signal asymptotically approaches zero and other signals in the system remain bounded for arbitrary initial conditions and for any bounded input to the system. It is shown that for a class of up-dating algorithms for the adjustable gain matrix, global convergence is crucially dependent on a transfer matrix G(z) which has a simple block diagram interpretation. When w(z)G(z) is strictly discrete positive real for a scalar w(z) such that w-1(z) is strictly proper with poles and zeros within the unit circle, an augmented error scheme is suggested and is proved to result in global convergence. The solution avoids feeding back a quadratic term as recommended in other schemes for single-input single-output systems.
Resumo:
We show that the large anomalous Hall constants of mixed-valence and Kondo-lattice systems can be understood in terms of a simple resonant-level Fermi-liquid model. Splitting of a narrow, orbitally unquenched, spin-orbit split, f resonance in a magnetic field leads to strong skew scattering of band electrons. We interpret both the anomalous signs and the strong temperature dependence of Hall mobilities in CeCu2Si2, SmB6, and CePd3 in terms of this theory.
Resumo:
A microstructural and X-ray investigation of Ti-AI-Mo alloys Ti-31 Al-15 Mo, Ti-31 Al-13 Mo, Ti-31Al-9Mo and Ti-35Al-9Mo (containing the Ti3Al, TiAl and β phases) indicates that the existing phase diagram of the ternary system for this composition range published by Ge Dhzhi-Min and Pylaeva is in error above 1473 K. An analysis of phase relations reveals that the error has arisen from their use of the Ti-AI diagram due to Bumps, Kessler and Hansen as a basis for generating the ternary. It is shown that a phase diagram of the ternary, consistent with the experimental results, can be generated using a version of the Ti-AI system due to Margolin. Simple geometric arguments are used to build up a new semi-quantitative description of the Ti-AI-Mo system which can be used as a basis for a detailed investigation of phase equilibria in this system.
Resumo:
the heats of reaction of an oxygen-balanced ternary fuel-oxidizer system have been shown to be linearly related to the total oxidizing valences (P0) of the composition. Because calculation of P0 is simple, the method is found to help in evaluating the energetics of such systems. The accuracy of the method when applied to various ternary systems has been discussed.
Resumo:
Conditions under which the asymptotic stabilization of uniformly decoupled time-varying multivariate systems is possible are explored. This is accomplished by developing a canonical form for integrator uniformly decoupled system in which the coefficient matrices have a simple structure. The procedures developed rely on certain conditions on the given system and yield explicit expressions for the stabilization compensators.
Resumo:
The time–history of the performance of a system is treated as a stochastic corrective process, in which deterioration due to aging is counteracted at brief maintenance checks. Using a diffusion approximation for the deterioration, simple models are proposed for describing maintenance either by component replacement or by performance restoration. Equilibrium solutions of the models show that the performance has a probability distribution with exponential tails: the uncritical use of Gaussians can grossly underestimate the probability of poor performance. The proposed models are supported by recent observational evidence on aircraft track-keeping errors, which are shown to follow the modified exponential distribution derived here. The analysis also brings out the relation between the deterioration characteristics of the system and the intensity of the maintenance effort required to achieve a given performance reliability.