101 resultados para silver competition

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noble metal such as Ag normally exists in an fcc crystal structure. However as the size of the material is decreased to nanometer lengthscales, a structural transformation from that of its bulk state can be expected with new atomic arrangements due to competition between internal packing and minimization of surface energy. In many previous studies, it has been shown that silver nanowires (AGNWs) grown inside anodic alumina (AAO) templates by ac or dc electrochemical deposition from silver salts or complexes, adopt fcc structure and below some critical diameter ∼ 20 nm they may acquire hcp structure at low temperature. This is, however, critically dependant on the nature of confinement, as AgNWs grown inside nanotube confinement with subnanometer diameter have been reported to have fcc structure. Hence the question of the crystal structure of metal nanowires under combined influence of confinement, temperature and deposition condition remains open. In this abstract we show that the alternative crystal structures of AGNWs at room temperature can be achieved with electrochemical growth processes under specific conditions determined by the deposition parameters and nature of confinement. We fabricated AgNWs of 4H hexagonal structure with diameters 30 – 80 nm inside polycarbonate (PC) templates with a modified dc electrodeposition technique, where the nanowires were grown at deposition potentials as low as 10 mV in 2 M silver nitrate solution[1]. We call this low-potential electrodeposition (LPED) since the electrodeposition process occurs at potential much less than the standard Nernst potential (770 mV) of silver. Two types of electrodes were used – stainless steel and sputtered thin Pt film, neither of which had any influence on the crystal structure of the nanowires. EDS elemental analysis showed the nanowires to consist only of silver. Although the precise atomic dynamics during the LPED process is unclear at present, we investigated this with HRTEM (high-resolution transmission electron microscopy) characterization of nanowires grown over various deposition times, as well as electrical conductivity measurements. These experiments indicate that nanowire growth does not occur through a three-dimensional diffusion controlled process, as proposed for conventional over-potential deposition, but follow a novel instantaneous linear growth mechanism. Further experiments showed that, (a) conventional electrochemical growth at a small over-potential in a 2 mM AgNO3 solution yields nanowires with expected fcc structure inside the same PC templates, and (2) no nanowire was observed under the LPED conditions inside hard AAO templates, indicating that LPED-growth process, and hcp structure of the corresponding nanowires depend on deposition parameters, as well as nature of confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new quaternary fast-ion conducting silver molybdo-arsenate [Agl-Ag2O-(MoO3 + As2O5)] (SMA) glassy system has been prepared using the melt-quenching technique for various dopant salt (Agl) concentrations by fixing the formers (MoO3 + As2O5) composition and the modifier (Ag2O) to formers (M/F) ratio. The prepared compounds were characterized by X-ray diffraction. The impedance measurements were made on different Agl compositions of the SMA glasses as a function of frequency (6.5 Hz-65 kHz) and temperature (303-343 K), using the Solatron frequency-response analyser(model 1250). The bulk conductivity and the appropriate physical model (equivalent circuit) of the SMA glass were obtained from the impedance analysis. The a.c. conductivity was calculated for different Agl compositions of SMA glasses at various temperatures and the obtained a.c. conductivity results were analysed using Jonscher's Universal Law. The conduction mechanism for the highest conducting SMA glassy compound has been explained using the diffusion path model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver/metal hydride (Ag/MH) cells of about 1 Ah capacity have been fabricated and their discharge characteristics at different rates of discharge, faradaic efficiency, cycle life and a.c. impedance have been evaluated. These cells comprise metal-hydride electrodes prepared by employing similar to 60 mu m powder of an AB(2)-Laves phase alloy of nominal composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 with PTFE binder on a nickel-mesh substrate as the negative plates and commercial-grade silver electrodes as the positive plates. The cells are positive limited and exhibit two distinct voltage plateaus characteristic of two-step reduction of AgO to Ag during their low rates of discharge between C/20 and C/10. This feature is, however, absent when the cells are discharged at C/5 rate. On charging the cells to 100% of their capacity, the faradaic efficiency is found to be 100%. The impedance of the Ag/MH cell is essentially due to the impedance of the silver electrodes, since MH electrodes offer negligible impedance. The cells may be subjected to a large number of charge-discharge cycles with little deterioration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles are known to have bactericidal effects. A new generation of dressings incorporating antimicrobial agents like silver nanoparticles is being formulated to reduce or prevent infections. The particles can be incorporated in materials and cloth rendering them sterile. Recently, it was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Apart from being environmentally friendly process, use of Neem leaves extract might add synergistic antibacterial effect of Neem leaves to the biosynthesized nanoparticles. With this hypothesis the biosynthetic production of silver nanoparticles by aqueous extract of Neem leaves and its bactericidal effect in cotton cloth against E. Coli were studied in this work. Silver nanoparticles were synthesized by short term (1 day) and long term (21 days) interaction of Neem extract (20% w/v) and 0.01 M AgNO3 solution in 1:4 mixing ratio. The synthesized particles were characterized by UV visible spectroscopy, transmission electron microscopy, and incorporated into cotton disks by (i) centrifuging the disks with liquid broth containing nanoparticles, (ii) in-situ coating process during synthesis, and (iii) coating with dried and purified nanoparticles. The antibacterial property of the nanoparticles coated cotton disks was studied by disk diffusion method. The effect of consecutive washing of the coated disks with distilled water on antibacterial property was also investigated. This work demonstrates the possible use of biologically synthesized silver nanoparticles by its incorporation in cloths leading them to sterilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precise timing of individual signals in response to those of signaling neighbors is seen in many animal species. Synchrony is the most striking of the resultant timing patterns. One of the best examples of acoustic synchrony is in katydid choruses where males produce chirps with a high degree of temporal overlap. Cooperative hypotheses that speculate on the evolutionary origins of acousti synchrony include the preservation of the species-specific call pattern, reduced predation risks, and increased call intensity. An alternative suggestion is that synchrony evolved as an epiphenomenon of competition between males in response to a female preference for chirps that lead other chirps. Previous models investigating the evolutionary origins of synchrony focused only on intrasexual competitive interactions. We investigated both competitive and cooperative hypotheses for the evolution of synchrony in the katydid Mecopoda ``Chirper'' using physiologically and ecologically realistic simulation models incorporating the natural variation in call features, ecology, female preferences, and spacing patterns, specifically aggregation. We found that although a female preference for leading chirps enables synchronous males to have some selective advantage, it is the female preference for the increased intensity of aggregations of synchronous males that enables synchrony to evolve as an evolutionarily stable strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray and He(II) ultraviolet photoelectron spectroscopy studies of the interaction of CO with oxygen on potassium-, caesium- and barium-covered Ag surfaces have shown the formation of carbonate at 300 K. While on a caesium-covered surface only carbonate formation takes place, on the potassium- and barium-covered surfaces molecularly chemisorbed CO is also formed. The variation of the surface concentrations of carbon and oxygen with temperature has been examined and a reaction sequence for the interaction of CO with adsorbed oxygen on potassium-, caesium- and barium-covered Ag surfaces is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the tensile properties at 77 K and 300 K in warm-rolled (300 K) Cd-1% Ag alloy with deformation has been studied in longitudinal as well as transverse specimens. The low-temperature yield strength increases with warm rolling without much loss in ductility. The strength at 300 K, however, decreases with heavy warm deformation. From microstructural studies and X-ray investigations, it was observed that changes in grain size and texture occur during warm rolling. Both these changes are found to be important in deciding the tensile properties. The longitudinal and transverse strengths at 77 K vary linearly with l-frac12, where l is the average grain diameter, and thus they obey the Hall-Petch relation. The Hall-Petch slope, k, is lower in specimens with favourable lcub1013rcub texture while the intercept σo is higher when the lcub0002rcub texture is less favourable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical conductivities and dielectric properties of glassy Ag4P2O7 have been investigated as a function of temperature and frequency. The variation of the properties is consistent with the structure of this glass which consists of a variety of polymeric anion species. Upon crystallization Ag4P2O7 appears to retain some of the anionic species in the solid solution as evident from the phase transition behaviour at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the tensile properties at 77 K and 300 K in warm-rolled (300 K) Cd-1% Ag alloy with deformation has been studied in longitudinal as well as transverse specimens. The low-temperature yield strength increases with warm rolling without much loss in ductility. The strength at 300 K, however, decreases with heavy warm deformation. From microstructural studies and X-ray investigations, it was observed that changes in grain size and texture occur during warm rolling. Both these changes are found to be important in deciding the tensile properties. The longitudinal and transverse strengths at 77 K vary linearly with l-frac12, where l is the average grain diameter, and thus they obey the Hall-Petch relation. The Hall-Petch slope, k, is lower in specimens with favourable lcub1013rcub texture while the intercept σo is higher when the lcub0002rcub texture is less favourable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XPS studies show that the presence of chemisorbed chlorine stabilizes and also enhances molecular dioxygen species on Ag surfaces dosed with either K or Ba. The surface atomic oxygen is found to become depleted on chlorination. The variation in the nature of surface species with respect to temperature shows chlorine-induced diffusion of atomic oxygen into the subsurface region at 300 K. For coverages of potassium up to 8 × 1014 atoms/cm2, preferential chloridation of Ag occurs while at higher potassium coverages, KCl formation is distinctly observed on the surface. In the case of barium, two types of adsorbed chlorine species, Cl(α) and Cl(β), associated with Ag and Ba, respectively, are clearly seen even at low barium coverages. This is believed to be due to the higher valence occupation of barium compared to potassium. The Cl(α) species associated with Ag is found to occupy a preferred site on both K- and Ba-dosed surfaces, involving chemisorptive replacement of O(α) to the subsurface region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bicyclic organoboranes (9-borabicyclo[3.3.1]nonane, 10-borabicyclo[4.3.1]decane and 11-borabicyclo[5.3.1] undecane) react with alkaline silver nitrate solution to give a mixture of monocyclic ketone and cis-monocyclic olefin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe here a rapid, energy-efficient, green and economically scalable room temperature protocol for the synthesis of silver nanoparticles. Tannic acid, a polyphenolic compound derived from plant extracts is used as the reducing agent. Silver nanoparticles of mean size ranging from 3.3 to 22.1 nm were synthesized at room temperature by the addition of silver nitrate to tannic acid solution maintained at an alkaline pH. The mean size was tuned by varying the molar ratio of tannic acid to silver nitrate. We also present proof of concept results demonstrating its suitability for room temperature continuous flow processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of similar to 2 nm, while silver particles have 4-5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between carnivores during the defence of kills may be one reason why certain carnivores live in groups. This is especially true of lions, hyaenas and the African wild dog, The dhole or the Asiatic wild dog, primarily a pack living animal, has been observed to regularly interact with both tigers and leopards, Such interactions have taken place over kills and otherwise. In this report, five such interactions are described, It was found that the pack's behaviour of surrounding bushes acid trees on which the cat was confined precluded immediate escape. The presence of sentinels, while the pack was resting, warned the pack of the presence of a big cat and the pack grouped when a big cat appeared, Costs to both individuals within the dhole packs and the cats involved in the encounters were found to be slight, The reasons for such potentially costly encounters could be competition for finite food resources or thwarting predation, Dholes have a significant diet overlap with both leopards and tigers and aggressively encounter with leopards but not with tigers, Differences between diet overlaps may not be the basis behind the differences in aggression, It is more likely that, the small size of leopards and the fact that they predate more often on dholes, cause dhole packs to be more aggressive to leopards than to tigers, The size of carnivore groups may thus pose an advantage during competitive interactions among carnivore species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.