6 resultados para sheaf cohomology
em Indian Institute of Science - Bangalore - Índia
Resumo:
Corepresentations of a coalgebra over a quadratic operad are defined, and various characterizations of them are given. Cohomology of such an operadic coalgebra with coefficients in a corepresentation is then studied.
Resumo:
We give it description, modulo torsion, of the cup product on the first cohomology group in terms of the descriptions of the second homology group due to Hopf and Miller.
Resumo:
We evaluate the commutator of the Gauss law constraints starting from the chirally gauged Wess-Zumino-Witten action. The calculations are done at tree level, i.e. by evaluating corresponding Poisson brackets. The results are compared with commutators obtained by others directly from the gauged fermionic theory, and with Faddeev's results based on cohomology.
Resumo:
We present an elementary combinatorial proof of the existence and uniqueness of the 9-vertex triangulation of C P2. The original proof of existence, due to Kuhnel, as well as the original proof of uniqueness, due to Kuhnel and Lassmann, were based on extensive computer search. Recently Arnoux and Marin have used cohomology theory to present a computer-free proof. Our proof has the advantage of displaying a canonical copy of the affine plane over the three-element field inside this complex in terms of which the entire complex has a very neat and short description. This explicates the full automorphism group of the Kuhnel complex as a subgroup of the automorphism group of this affine plane. Our method also brings out the rich combinatorial structure inside this complex.
Resumo:
We associate a sheaf model to a class of Hilbert modules satisfying a natural finiteness condition. It is obtained as the dual to a linear system of Hermitian vector spaces (in the sense of Grothendieck). A refined notion of curvature is derived from this construction leading to a new unitary invariant for the Hilbert module. A division problem with bounds, originating in Douady's privilege, is related to this framework. A series of concrete computations illustrate the abstract concepts of the paper.
Resumo:
Let M be the completion of the polynomial ring C(z) under bar] with respect to some inner product, and for any ideal I subset of C (z) under bar], let I] be the closure of I in M. For a homogeneous ideal I, the joint kernel of the submodule I] subset of M is shown, after imposing some mild conditions on M, to be the linear span of the set of vectors {p(i)(partial derivative/partial derivative(w) over bar (1),...,partial derivative/partial derivative(w) over bar (m)) K-I] (., w)vertical bar(w=0), 1 <= i <= t}, where K-I] is the reproducing kernel for the submodule 2] and p(1),..., p(t) is some minimal ``canonical set of generators'' for the ideal I. The proof includes an algorithm for constructing this canonical set of generators, which is determined uniquely modulo linear relations, for homogeneous ideals. A short proof of the ``Rigidity Theorem'' using the sheaf model for Hilbert modules over polynomial rings is given. We describe, via the monoidal transformation, the construction of a Hermitian holomorphic line bundle for a large class of Hilbert modules of the form I]. We show that the curvature, or even its restriction to the exceptional set, of this line bundle is an invariant for the unitary equivalence class of I]. Several examples are given to illustrate the explicit computation of these invariants.