6 resultados para sexual fluidity
em Indian Institute of Science - Bangalore - Índia
Resumo:
Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.
Resumo:
Magnetic resonance studies reveal a marked difference between the binding of α-tocopherol and that of the corresponding acetate (vitamin E acetate) with dipalmitoylphosphatidylcholine (DPPC) vesicles. This is reflected in differences in the phase-transition curves of the DPPC vesicles incorporated with the two compounds, as well as in the 13C relaxation times and line widths. A model for the incorporation of these molecules in lipid bilayers has been suggested. α-Tocopherol binds strongly with the lipids, possibly through a hydrogen bond formation between the hydroxyl group of the former and one of the oxygen atoms of the latter. The possibility of such a hydrogen bond formation is excluded in vitamin E acetate, which binds loosely through the normal hydrophobic interaction. The model for lipid-vitamin interaction explains the in vitro decomposition of H2O2 by α-tocopherol. α-Tocopherol in conjuction with H2O2 can also act as a free-radical scavenger in the lipid phase. The incorporation of α-tocopherol and vitamin E acetate in DPPC vesicles enhances the permeability of lipid bilayers for small molecules such as sodium ascorbate.
Resumo:
Bull sperm plasma and outer acrosomal membranes have been isolated by discontinuous sucrose density gradient centrifugation and Ca2+-ATPase activity has been determined for both the membranes. Pyrene excimer fluorescence and diphenylhexatriene fluorescence polarization studies show that the lipid phase of the sperm plasma membranes is more fluid than the lipids of the outer acrosomal membranes. Approximately, a three fold increase in the cholesterol content has been found in the outer acrosomal membranes as compared to that in the plasma membranes.
Resumo:
Fenvalerate is a commonly used pyrethroid insecticide, used to control a wide range of pests. We have studied its interaction with the membrane using fluorescence polarization and differential scanning calorimetry (DSC) techniques. Fenvalerate was found to decrease the DPH fluorescence polarization value of synaptosomal and microsomal membrane, implicating that it makes the membrane more fluid. At different concentrations of fenvalerate, the activation energy of the probe molecule in the membrane also changes revealed from the change in slope of the Arrhenius plot. At higher concentrations the insecticide slowly saturates the membrane. The effects of fenvalerate on model membrane were also studied with liposomes reconstituted with dipalmitoylphosphatidylcholine (DPPC). Fenvalerate decreased the phase transition temperature (Tm) of DPPC by 1.5 °C at 40 μM concentration, but there was no effect on the cooperativity of the transition as interpreted from the DSC thermogram. From the change in the thermogram profile with fenvalerate it has been interpreted that it localizes in the acyl chain region of the lipid, possibly between C10 and C16 region and weakens the acyl chain packing. Fenvalerate was also found to interact with DPPC liposomes containing cholesterol to fluidize it.
Resumo:
Chemical signaling is a prominent mode of male-female communication among elephants, especially during their sexually active periods. Studies on the Asian elephant in zoos have shown the significance of a urinary pheromone (Z7-12:Ac) in conveying the reproductive status of a female toward the opposite sex. We investigated the additional possibility of an inter-sexual chemical signal being conveyed through dung. Sixteen semi-captive adult male elephants were presented with dung samples of three female elephants in different reproductive phases. Each male was tested in 3 separate trials, within an interval of 1-3 days. The trials followed a double-blind pattern as the male and female elephants used in the trials were strangers, and the observer was not aware of the reproductive status of females during the period of bioassays. Males responded preferentially (P < 0.005), in terms of higher frequency of sniff, check and place behavior toward the dung of females close to pre-ovulatory period (follicular-phase) as compared to those in post-ovulatory period (luteal-phase). The response toward the follicular phase samples declined over repeated trials though was still significantly higher than the corresponding response toward the non-ovulatory phase in each of the trials performed. This is the first study to show that male Asian elephants were able to distinguish the reproductive phase of the female by possibly detecting a pre-ovulatory pheromone released in dung. (C) 2012 Elsevier B.V. All rights reserved.