6 resultados para sediment reduction

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birch reductio and reductive methylations of some substituted naphtholic acids have been examined. The factors influencing the mechanism of reduction process have been discussed. Some of the reduced naphthoic acids are useful synthons for synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calciothermic reduction of TiO2 provides a potentially low-cost route to titanium production. Presented in this article is a suitably designed diagram, useful for assessing the degree of reduction of TiO2 and residual oxygen contamination in metal as a function of reduction temperature and other process parameters. The oxygen chemical potential diagram à la Ellingham-Richardson-Jeffes is useful for visualization of the thermodynamics of reduction reactions at high temperatures. Although traditionally the diagram depicts oxygen potentials corresponding to the oxidation of different metals to their corresponding oxides or of lower oxides to higher oxides, oxygen potentials associated with solution phases at constant composition can be readily superimposed. The usefulness of the diagram for an insightful analysis of calciothermic reduction, either direct or through an electrochemical process, is discussed. Identified are possible process variations, modeling and optimization strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene oxide (GO) is assembled on a gold substrate by a layer-by-layer technique using a self-assembled cystamine monolayer. The negatively charged GO platelets are attached to the positively charged cystamine monolayer through electrostatic interactions. Subsequently, it is shown that the GO can be reduced electrochemically using applied DC bias by scanning the potential from 0 to -1 V vs a saturated calomel electrode in an aqueous electrolyte. The GO and reduced graphene oxide (RGO) are characterized by Raman spectroscopy and atomic force microscopy (AFM). A clear shift of the G band from 1610 cm-1 of GO to 1585 cm-1 of RGO is observed. The electrochemical reduction is followed in situ by micro Raman spectroscopy by carrying out Raman spectroscopic studies during the application of DC bias. The GO and RGO films have been characterized by conductive AFM that shows an increase in the current flow by at least 3 orders of magnitude after reduction. The electrochemical method of reducing GO may open up another way of controlling the reduction of GO and the extent of reduction to obtain highly conducting graphene on electrode materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies reveal a reduction in the values of permittivity for epoxy nanocomposites; at low filler loadings as compared to neat epoxy over a wide frequency range. This permittivity reduction is attributed to the interaction dynamics between nanoparticles: and epoxy chains at the interface region and interestingly, this interaction has also been found to influence the glass transition temperatures (T-g) of the examined nanocomposite systems. Accordingly, a dual nanolayer interface model for an epoxy based nanocomposite system is analyzed to explain the obtained permittivity characteristics.