7 resultados para security model

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a generic three-pass key agreement protocol that is based on a certain kind of trapdoor one-way function family. When specialized to the RSA setting, the generic protocol yields the so-called KAS2 scheme that has recently been standardized by NIST. On the other hand, when specialized to the discrete log setting, we obtain a new protocol which we call DH2. An interesting feature of DH2 is that parties can use different groups (e.g., different elliptic curves). The generic protocol also has a hybrid implementation, where one party has an RSA key pair and the other party has a discrete log key pair. The security of KAS2 and DH2 is analyzed in an appropriate modification of the extended Canetti-Krawczyk security model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power system network is assumed to be in steady-state even during low frequency transients. However, depending on generator dynamics, and toad and control characteristics, the system model and the nature of power flow equations can vary The nature of power flow equations describing the system during a contingency is investigated in detail. It is shown that under some mild assumptions on load-voltage characteristics, the power flow equations can be decoupled in an exact manner. When the generator dynamics are considered, the solutions for the load voltages are exact if load nodes are not directly connected to each other

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current standard security practices do not provide substantial assurance about information flow security: the end-to-end behavior of a computing system. Noninterference is the basic semantical condition used to account for information flow security. In the literature, there are many definitions of noninterference: Non-inference, Separability and so on. Mantel presented a framework of Basic Security Predicates (BSPs) for characterizing the definitions of noninterference in the literature. Model-checking these BSPs for finite state systems was shown to be decidable in [8]. In this paper, we show that verifying these BSPs for the more expressive system model of pushdown systems is undecidable. We also give an example of a simple security property which is undecidable even for finite-state systems: the property is a weak form of non-inference called WNI, which is not expressible in Mantel’s BSP framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile ad hoc networks (MANETs) is one of the successful wireless network paradigms which offers unrestricted mobility without depending on any underlying infrastructure. MANETs have become an exciting and im- portant technology in recent years because of the rapid proliferation of variety of wireless devices, and increased use of ad hoc networks in various applications. Like any other networks, MANETs are also prone to variety of attacks majorly in routing side, most of the proposed secured routing solutions based on cryptography and authentication methods have greater overhead, which results in latency problems and resource crunch problems, especially in energy side. The successful working of these mechanisms also depends on secured key management involving a trusted third authority, which is generally difficult to implement in MANET environ-ment due to volatile topology. Designing a secured routing algorithm for MANETs which incorporates the notion of trust without maintaining any trusted third entity is an interesting research problem in recent years. This paper propose a new trust model based on cognitive reasoning,which associates the notion of trust with all the member nodes of MANETs using a novel Behaviors-Observations- Beliefs(BOB) model. These trust values are used for detec- tion and prevention of malicious and dishonest nodes while routing the data. The proposed trust model works with the DTM-DSR protocol, which involves computation of direct trust between any two nodes using cognitive knowledge. We have taken care of trust fading over time, rewards, and penalties while computing the trustworthiness of a node and also route. A simulator is developed for testing the proposed algorithm, the results of experiments shows incorporation of cognitive reasoning for computation of trust in routing effectively detects intrusions in MANET environment, and generates more reliable routes for secured routing of data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

State estimation is one of the most important functions in an energy control centre. An computationally efficient state estimator which is free from numerical instability/ill-conditioning is essential for security assessment of electric power grid. Whereas approaches to successfully overcome the numerical ill-conditioning issues have been proposed, an efficient algorithm for addressing the convergence issues in the presence of topological errors is yet to be evolved. Trust region (TR) methods have been successfully employed to overcome the divergence problem to certain extent. In this study, case studies are presented where the conventional algorithms including the existing TR methods would fail to converge. A linearised model-based TR method for successfully overcoming the convergence issues is proposed. On the computational front, unlike the existing TR methods for state estimation which employ quadratic models, the proposed linear model-based estimator is computationally efficient because the model minimiser can be computed in a single step. The model minimiser at each step is computed by minimising the linearised model in the presence of TR and measurement mismatch constraints. The infinity norm is used to define the geometry of the TR. Measurement mismatch constraints are employed to improve the accuracy. The proposed algorithm is compared with the quadratic model-based TR algorithm with case studies on the IEEE 30-bus system, 205-bus and 514-bus equivalent systems of part of Indian grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bisimulation-based information flow properties were introduced by Focardi and Gorrieri [1] as a way of specifying security properties for transition system models. These properties were shown to be decidable for finite-state systems. In this paper, we study the problem of verifying these properties for some well-known classes of infinite state systems. We show that all the properties are undecidable for each of these classes of systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the self-organized public key management approaches, public key verification is achieved through verification routes constituted by the transitive trust relationships among the network principals. Most of the existing approaches do not distinguish among different available verification routes. Moreover, to ensure stronger security, it is important to choose an appropriate metric to evaluate the strength of a route. Besides, all of the existing self-organized approaches use certificate-chains for achieving authentication, which are highly resource consuming. In this paper, we present a self-organized certificate-less on-demand public key management (CLPKM) protocol, which aims at providing the strongest verification routes for authentication purposes. It restricts the compromise probability for a verification route by restricting its length. Besides, we evaluate the strength of a verification route using its end-to-end trust value. The other important aspect of the protocol is that it uses a MAC function instead of RSA certificates to perform public key verifications. By doing this, the protocol saves considerable computation power, bandwidth and storage space. We have used an extended strand space model to analyze the correctness of the protocol. The analytical, simulation, and the testbed implementation results confirm the effectiveness of the proposed protocol. (c) 2014 Elsevier B.V. All rights reserved.