15 resultados para routing performance

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vehicular Ad-hoc Networks (VANET), is a type of wireless ad-hoc network that aims to provide communication among vehicles. A key characteristic of VANETs is the very high mobility of nodes that result in a frequently changing topology along with the frequent breakage and linkage of the paths among the nodes involved. These characteristics make the Quality of Service (QoS) requirements in VANET a challenging issue. In this paper we characterize the performance available to applications in infrastructureless VANETs in terms of path holding time, path breakage probability and per session throughput as a function of various vehicle densities on road, data traffic rate and number of connections formed among vehicles by making use of table-driven and on-demand routing algorithms. Several QoS constraints in the applications of infrastructureless VANETs are observed in the results obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study wireless multihop energy harvesting sensor networks employed for random field estimation. The sensors sense the random field and generate data that is to be sent to a fusion node for estimation. Each sensor has an energy harvesting source and can operate in two modes: Wake and Sleep. We consider the problem of obtaining jointly optimal power control, routing and scheduling policies that ensure a fair utilization of network resources. This problem has a high computational complexity. Therefore, we develop a computationally efficient suboptimal approach to obtain good solutions to this problem. We study the optimal solution and performance of the suboptimal approach through some numerical examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we shed light on the cross-layer interactions between the PHY, link and routing layers in networks with MIMO links operating in the diversity mode. Many previous studies assume an overly simplistic PHY layer model that does not sufficiently capture these interactions. We show that the use of simplistic models can in fact lead to misleading conclusions with regards to the higher layer performance with MIMO diversity. Towards understanding the impact of various PHY layer features on MIMO diversity, we begin with a simple but widely-used model and progressively incorporate these features to create new models. We examine the goodness of these models by comparing the simulated performance results with each, with measurements on an indoor 802.11 n testbed. Our work reveals several interesting cross-layer dependencies that affect the gains due to MIMO diversity. In particular, we observe that relative to SISO links: (a) PHY layer gains due to MIMO diversity do not always carry over to the higher layers, (b) the use of other PHY layer features such as FEC codes significantly influence the gains due to MIMO diversity, and (c) the choice of the routing metric can impact the gains possible with MIMO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a System-C based framework we are developing, to explore the impact of various architectural and microarchitectural level parameters of the on-chip interconnection network elements on its power and performance. The framework enables one to choose from a variety of architectural options like topology, routing policy, etc., as well as allows experimentation with various microarchitectural options for the individual links like length, wire width, pitch, pipelining, supply voltage and frequency. The framework also supports a flexible traffic generation and communication model. We provide preliminary results of using this framework to study the power, latency and throughput of a 4x4 multi-core processing array using mesh, torus and folded torus, for two different communication patterns of dense and sparse linear algebra. The traffic consists of both Request-Response messages (mimicing cache accesses)and One-Way messages. We find that the average latency can be reduced by increasing the pipeline depth, as it enables higher link frequencies. We also find that there exists an optimum degree of pipelining which minimizes energy-delay product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh network, where the nodes in the network are subjected to maximum energy expenditure rates. We model link contention in the wireless network using the contention graph and we model energy expenditure rate constraint of nodes using the energy expenditure rate matrix. We formulate the problem as an aggregate utility maximization problem and apply duality theory in order to decompose the problem into two sub-problems namely, network layer routing and congestion control problem and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. We study the e�ects of energy expenditure rate constraints of the nodes on the optimal throughput of the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In sensor networks, routing algorithms should be designed such that packet losses due to wireless links are reduced.In this paper, we present a ”potential”-based routing scheme to find routes with high packet delivery ratios. The basic idea is to define a scalar potential value at each node in the network and forward data to the neighbour with the highest potential.For a simple 2-relay network, we propose a potential function that takes into account wireless channel state. Markov-chain based analysis provides analytical expressions for packet delivery ratio. Considerable improvement can be observed compared to a channel-state-oblivious policy. This motivates us to define a channel-state-dependent potential function in a general network context. Simulations show that for a relatively slowly changing wireless network, our approach can provide up to 20% better performance than the commonly- used shortest-hop-count-based routing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scalable Networks on Chips (NoCs) are needed to match the ever-increasing communication demands of large-scale Multi-Processor Systems-on-chip (MPSoCs) for multi media communication applications. The heterogeneous nature of application specific on-chip cores along with the specific communication requirements among the cores calls for the design of application-specific NoCs for improved performance in terms of communication energy, latency, and throughput. In this work, we propose a methodology for the design of customized irregular networks-on-chip. The proposed method exploits a priori knowledge of the applications communication characteristic to generate an optimized network topology and corresponding routing tables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor network applications such as environmental monitoring demand that the data collection process be carried out for the longest possible time. Our paper addresses this problem by presenting a routing scheme that ensures that the monitoring network remains connected and hence the live sensor nodes deliver data for a longer duration. We analyze the role of relay nodes (neighbours of the base-station) in maintaining network connectivity and present a routing strategy that, for a particular class of networks, approaches the optimal as the set of relay nodes becomes larger. We then use these findings to develop an appropriate distributed routing protocol using potential-based routing. The basic idea of potential-based routing is to define a (scalar) potential value at each node in the network and forward data to the neighbor with the highest potential. We propose a potential function and evaluate its performance through simulations. The results show that our approach performs better than the well known lifetime maximization policy proposed by Chang and Tassiulas (2004), as well as AODV [Adhoc on demand distance vector routing] proposed by Perkins (1997).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we are concerned with finding the maximum throughput that a mobile ad hoc network can support. Even when nodes are stationary, the problem of determining the capacity region has long been known to be NP-hard. Mobility introduces an additional dimension of complexity because nodes now also have to decide when they should initiate route discovery. Since route discovery involves communication and computation overhead, it should not be invoked very often. On the other hand, mobility implies that routes are bound to become stale resulting in sub-optimal performance if routes are not updated. We attempt to gain some understanding of these effects by considering a simple one-dimensional network model. The simplicity of our model allows us to use stochastic dynamic programming (SDP) to find the maximum possible network throughput with ideal routing and medium access control (MAC) scheduling. Using the optimal value as a benchmark, we also propose and evaluate the performance of a simple threshold-based heuristic. Unlike the optimal policy which requires considerable state information, the heuristic is very simple to implement and is not overly sensitive to the threshold value used. We find empirical conditions for our heuristic to be near-optimal as well as network scenarios when our simple heuristic does not perform very well. We provide extensive numerical and simulation results for different parameter settings of our model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose two variants of the Q-learning algorithm that (both) use two timescales. One of these updates Q-values of all feasible state-action pairs at each instant while the other updates Q-values of states with actions chosen according to the ‘current ’ randomized policy updates. A sketch of convergence of the algorithms is shown. Finally, numerical experiments using the proposed algorithms for routing on different network topologies are presented and performance comparisons with the regular Q-learning algorithm are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose an efficient source routing algorithm for unicast flows, which addresses the scalability problem associated with the basic source routing technique. Simulation results indicate that the proposed algorithm indeed helps in reducing the message overhead considerably, and at the same time it gives comparable performance in terms of resource utilization across a wide range of workloads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of optimal routing in a multi-stage network of queues with constraints on queue lengths. We develop three algorithms for probabilistic routing for this problem using only the total end-to-end delays. These algorithms use the smoothed functional (SF) approach to optimize the routing probabilities. In our model all the queues are assumed to have constraints on the average queue length. We also propose a novel quasi-Newton based SF algorithm. Policies like Join Shortest Queue or Least Work Left work only for unconstrained routing. Besides assuming knowledge of the queue length at all the queues. If the only information available is the expected end-to-end delay as with our case such policies cannot be used. We also give simulation results showing the performance of the SF algorithms for this problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of joint routing, scheduling and power control in a multihop wireless network when the nodes have multiple antennas. We focus on exploiting the multiple degrees-of-freedom available at each transmitter and receiver due to multiple antennas. Specifically we use multiple antennas at each node to form multiple access and broadcast links in the network rather than just point to point links. We show that such a generic transmission model improves the system performance significantly. Since the complexity of the resulting optimization problem is very high, we also develop efficient suboptimal solutions for joint routing, scheduling and power control in this setup.