7 resultados para road traffic injury

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Moving shadow detection and removal from the extracted foreground regions of video frames, aim to limit the risk of misconsideration of moving shadows as a part of moving objects. This operation thus enhances the rate of accuracy in detection and classification of moving objects. With a similar reasoning, the present paper proposes an efficient method for the discrimination of moving object and moving shadow regions in a video sequence, with no human intervention. Also, it requires less computational burden and works effectively under dynamic traffic road conditions on highways (with and without marking lines), street ways (with and without marking lines). Further, we have used scale-invariant feature transform-based features for the classification of moving vehicles (with and without shadow regions), which enhances the effectiveness of the proposed method. The potentiality of the method is tested with various data sets collected from different road traffic scenarios, and its superiority is compared with the existing methods. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman-Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the last decade, developing countries such as India have been exhibiting rapid increase in human population and vehicles, and increase in road accidents. Inappropriate driving behaviour is considered one of the major causes of road accidents in India as compared to defective geometric design of pavement or mechanical defects in vehicles. It can result in conditions such as lack of lane discipline, disregard to traffic laws, frequent traffic violations, increase in crashes due to self-centred driving, etc. It also demotivates educated drivers from following good driving practices. Hence, improved driver behaviour can be an effective countermeasure to reduce the vulnerability of road users and inhibit crash risks. This article highlights improved driver behaviour through better driver education, driver training and licensing procedures along with good on-road enforcement; as an effective countermeasure to ensure road safety in India. Based on the review and analysis, the article also recommends certain measures pertaining to driver licensing and traffic law enforcement in India aimed at improving road safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the course of preparation of a master plan for the transportation networks in Bangalore city, mapping the various initiatives and interventions planned towards addressing mobility, existing situation and implications of some of the proposed interventions was analysed. The inferences are based on existing transportation network; synthesis of various transportation related studies and proposed infrastructure initiatives (road works) in Bangalore. Broadly, they can be summarized as following five aspects: I. Need for ~Sreclassifying~T existing road networks (arterial and sub-arterial) with effective geospatial database in the back-end. II. The proposed Core Ring Road at surface grade may not be feasible. III. Current interventions encouraging more independent motorable transport by way of road widening, construction of underpasses, flyovers and grade-separators would not ease traffic congestion when addressed in isolation. IV. Factors affecting time and cost-overruns in infrastructure projects and ways to tackle are discussed. V. Initiatives required for addressing effective planning for operations recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose, for the first time, a reinforcement learning (RL) algorithm with function approximation for traffic signal control. Our algorithm incorporates state-action features and is easily implementable in high-dimensional settings. Prior work, e. g., the work of Abdulhai et al., on the application of RL to traffic signal control requires full-state representations and cannot be implemented, even in moderate-sized road networks, because the computational complexity exponentially grows in the numbers of lanes and junctions. We tackle this problem of the curse of dimensionality by effectively using feature-based state representations that use a broad characterization of the level of congestion as low, medium, or high. One advantage of our algorithm is that, unlike prior work based on RL, it does not require precise information on queue lengths and elapsed times at each lane but instead works with the aforementioned described features. The number of features that our algorithm requires is linear to the number of signaled lanes, thereby leading to several orders of magnitude reduction in the computational complexity. We perform implementations of our algorithm on various settings and show performance comparisons with other algorithms in the literature, including the works of Abdulhai et al. and Cools et al., as well as the fixed-timing and the longest queue algorithms. For comparison, we also develop an RL algorithm that uses full-state representation and incorporates prioritization of traffic, unlike the work of Abdulhai et al. We observe that our algorithm outperforms all the other algorithms on all the road network settings that we consider.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB 3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm 15] over two real road networks.