11 resultados para revolution protest democratization philippines serbia madagascar georgia ukraine
em Indian Institute of Science - Bangalore - Índia
Resumo:
A finite element analysis of laminated shells of revolution reinforced with laminated stifieners is described here-in. A doubly curved quadrilateral laminated anisotropic shell of revolution finite element of 48 d.o.f. is used in conjunction with two stiffener elements of 16 d.o.f. namely: (i) A laminated anisotropic parallel circle stiffener element (PCSE); (ii) A laminated anisotropic meridional stiffener element (MSE). These stifiener elements are formulated under line member assumptions as degenerate cases of the quadrilateral shell element to achieve compatibility all along the shell-stifiener junction lines. The solutions to the problem of a stiffened cantilever cylindrical shell are used to check the correctness of the present program while it's capability is shown through the prediction of the behavior of an eccentrically stiffened laminated hyperboloidal shell.
Resumo:
Near the boundaries of shells, thin shell theories cannot always provide a satisfactory description of the kinematic situation. This imposes severe limitations on simulating the boundary conditions in theoretical shell models. Here an attempt is made to overcome the above limitation. Three-dimensional theory of elasticity is used near boundaries, while thin shell theory covers the major part of the shell away from the boundaries. Both regions are connected by means of an “interphase element.” This method is used to study typical static stress and natural vibration problems
Resumo:
Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. in The stability and transition of heated and cooled incompressible laminar boundary layers, in Proceedings of the Fourth International Heat Transfer Conference, Vol. 2, FCI 4. Elsevier, Amsterdam (1970).
Resumo:
This paper is a sequel to the work published by the first and third authors[l] on stiffened laminated shells of revolution made of unimodular materials (materials having identical properties in tension and compression). A finite element analysis of laminated bimodulus composite thin shells of revolution, reinforced by laminated bimodulus composite stiffeners is reported herein. A 48 dot doubly curved quadrilateral laminated anisotropic shell of revolution finite element and it's two compatible 16 dof stiffener finite elements namely: (i) a laminated anisotropic parallel circle stiffener element (PCSE) and (ii) a laminated anisotropic meridional stiffener element (MSE) have been used iteratively. The constitutive relationship of each layer is assumed to depend on whether the fiberdirection strain is tensile or compressive. The true state of strain or stress is realized when the locations of the neutral surfaces in the shell and the stiffeners remain unaltered (to a specified accuracy) between two successive iterations. The solutions for static loading of a stiffened plate, a stiffened cylindrical shell. and a stiffened spherical shell, all made of bimodulus composite materials, have been presented.
Resumo:
An angle invariance property based on Hertz's principle of particle dynamics is employed to facilitate the surface-ray tracing on nondevelopable hybrid quadric surfaces of revolution (h-QUASOR's). This property, when used in conjunction with a Geodesic Constant Method, yields analytical expressions for all the ray-parameters required in the UTD formulation. Differential geometrical considerations require that some of the ray-parameters (defined heuristically in the UTD for the canonical convex surfaces) be modified before the UTD can be applied to such hybrid surfaces. Mutual coupling results for finite-dimensional slots have been presented as an example on a satellite launch vehicle modeled by general paraboloid of revolution and right circular cylinder.
Resumo:
Computer simulations have shown a novel geodesic splitting on the paraboloid of revolution leading to a multiplicity of surface ray paths. Such a phenomenon would have wide ramifications for wave propagation problems in general, besides applications in target-detection problems and the computational requirements of ray-theoretic formulations such as the UTD, in computing the antenna characteristics in the high-frequency domain.
Resumo:
An analytical surface-ray tracing has been carried out for the prolate ellipsoid of revolution using a novel geodesic constant method. This method yields closed form expressions for all the ray-geometric parameters required for the UTD mutual coupling calculations for the antennas located arbitrarily in three dimensions, on the ellipsoid of revolution.
Resumo:
We report detailed evidence for a new paleo-suture zone (the Kumta suture) on the western margin of southern India. The c. 15-km-wide, westward dipping suture zone contains garnet-biotite, fuchsite-haematite, chlorite-quartz, quartz-phengite schists, biotite augen gneiss, marble and amphibolite. The isochemical phase diagram estimations and the high-Si phengite composition of quartz-phengite schist suggest a near-peak condition of c. 18 kbar at c. 550 degrees C, followed by near-isothermal decompression. The detrital SHRIMP U-Pb zircon ages from quartz-phengite schist give four age populations ranging from 3280 to 2993 Ma. Phengite from quartz-phengite schist and biotite from garnet-biotite schist have K-Ar metamorphic ages of ca. 1326 and ca. 1385 Ma respectively. Electron microprobe-CHIME ages of in situ zircons in quartz-phengite schist (ca. 3750 Ma and ca. 1697 Ma) are consistent with the above results. The Bondla ultramafic-gabbro complex in the west of the Kumta suture compositionally represents an arc with K-Ar biotite ages from gabbro in the range 1644-1536 Ma. On the eastern side of the suture are weakly deformed and unmetamorphosed shallow westward-dipping sedimentary rocks of the Sirsi shelf, which has the following upward stratigraphy: pebbly quartzite/sandstone, turbidite, magnetite iron formation, and limestone; farther east the lower lying quartzite has an unconformable contact with ca. 2571 Ma quartzo-feldspathic gneisses of the Dharwar block with a ca. 1733 Ma biotite cooling age. To the west of the suture is a c. 60-km-wide Karwar block mainly consisting of tonalite-trondhjemite-granodiorite (TTG) and amphibolite. The TTGs have U-Pb zircon magmatic ages of ca. 3200 Ma with a rare inherited core age of ca. 3601 Ma. The K-Ar biotite cooling age from the TTGs (1746 Ma and 1796 Ma) and amphibolite (ca. 1697 Ma) represents late-stage uplift. Integration of geological, structural and geochronological data from western India and eastern Madagascar suggest diachronous ocean closure during the amalgamation of Rodinia; in the north at around ca. 1380 Ma, and a progression toward the south until ca. 750 Ma. Satellite imagery based regional structural lineaments suggests that the Betsimisaraka suture continues into western India as the Kumta suture and possibly farther south toward a suture in the Coorg area, representing in total a c. 1000 km long Rodinian suture. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The present study contributes new constraints on, and definitions of, the reconstructed plate margins of India and Madagascar based on flexural isostasy along the Western Continental Margin of India (WCMI) and the Eastern Continental Margin of Madagascar (ECMM). We have estimated the nature of isostasy and crustal geometry along the two margins, and have examined their possible conjugate structure. Here we utilize elastic thickness (Te) and Moho depth data as the primary basis for the correlation of these passive margins. We employ the flexure inversion technique that operates in spatial domain in order to estimate the spatial variation of effective elastic thickness. Gravity inversion and flexure inversion techniques are used to estimate the configuration of the Moho/Crust-Mantle Interface that reveals regional correlations with the elastic thickness variations. These results correlate well with the continental and oceanic segments of the Indian and African plates. The present study has found a linear zone of anomalously low-Te (1-5 km) along the WCMI (similar to 1680 km), which correlates well with the low-Te patterns obtained all along the ECMM. We suggest that the low-Te zones along the WCMI and ECMM represent paleo-rift inception points of lithosphere thermally and mechanically weakened by the combined effects of the Marion hotspot and lithospheric extension due to rifting. We have produced an India-Madagascar paleo-fit representing the initial phase of separation based on the Te estimates of the rifted conjugate margins, which is confirmed by a close-fit correlation of Moho geometry and bathymetry of the shelf margins. The matching of tectonic lineaments, lithologies and geochronological belts between India and Madagascar provide an additional support for the present plate reconstruction. (C) 2014 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The occurrence of high-pressure mafic-ultramafic bodies within major shear zones is one of the indicators of paleo-subduction. In mafic granulites of the Andriamena complex (north-eastern Madagascar) we document unusual textures including garnet-clinopyroxene-quartz coronas that formed after the breakdown of orthopyroxene-plagioclase-ilmenite. Textural evidence and isochemical phase diagram calculations in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2 system indicate a pressure-temperature (P-T) evolution from an isothermal (780 degrees C) pressure up to c. 24 kbar to decompression and cooling. Such a P-T trajectory is typically attained in a subduction zone setting where a gabbroic/ultramafic complex is subducted and later exhumed to the present crustal level during oceanic closure and final continental collision. The present results suggest that the presence of such deeply subducted rocks of the Andriamena complex is related to formation of the Betsimisaraka suture. LA-ICPMS U-Pb zircon dating of pelitic gneisses from the Betsimisaraka suture yields low Th/U ratios and protolith ages ranging from 2535 to 2625 Ma. A granitic gneiss from the Alaotra complex yields a zircon crystallization age of ca. 818 Ma and Th/U ratios vary from 1.08 to 2.09. K-Ar dating of muscovite and biotite from biotite-kyanite-sillimanite gneiss and garnet-biotite gneiss yields age of 486 +/- 9 Ma and 459 +/- 9 Ma respectively. We have estimated regional crustal thicknesses in NE Madagascar using a flexural inversion technique, which indicates the presence of an anomalously thick crust (c. 43 km) beneath the Antananarivo block. This result is consistent with the present concept that subduction beneath the Antananarivo block resulted in a more competent and thicker crust. The textural data, thermodynamic model, and geophysical evidence together provide a new insight to the subduction history, crustal thickening and evolution of the high-pressure Andriamena complex and its link to the terminal formation of the Betsimisaraka suture in north-eastern Madagascar. (C) 2015 Elsevier B.V. All rights reserved.