146 resultados para retention parameters
em Indian Institute of Science - Bangalore - Índia
Resumo:
Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.
Resumo:
The majority of studies pertaining to lead retention by clays and soils have examined the mechanisms, kinetics, and adsorption isotherms using the batch experiment technique that employs solid: water extracts of 1:10 and 1:20. Field soil deposits generally have much lower gravimetric water content ranging between 9 and 45%. Given the wide disparity in the solids: water ratio employed in the batch experiment technique and that prevailing in field deposits, this paper examines the lead retention characteristics of soils at field moisture contents (6%, 13%, and 25%) using artificially lead-contaminated soil specimens. A residually derived (i.e., formed by in-situ weathering of parent rock) red soil was used to prepare the artificially contaminated soil specimens. The impact of variations in clay content on lead retention was examined by diluting the residual soil with various amounts (0 to 60%) of river sand. Soil specimens remolded at 6 and 13% moisture contents produced very stiff to hard soils on compaction, while specimens remolded at 25% moisture content existed in the slurry state. The soil specimens were contaminated with low (30mg/kg) to high (2500mg/kg) concentrations of lead ions by remolding them with 160ppm to 10,000ppm ionic lead solutions. Lead retention by soils at field moisture contents was determined by extracting the lead from the soil using a water leach test. Experimental results showed that the bulk (71 to 99%) of the added lead was retained by the soil in insoluble form at the field moisture content. Correlations between the amount of lead retained and soil/solution parameters indicated that the amounts of Pb retained at field moisture content is a function of the initial Pb addition, total sand content, effective clay porosity, and soil pH.
Resumo:
The characterisation of cracks is usually done using the well known three basic fracture modes, namely opening, shearing and tearing modes. In isotropic materials these modes are uncoupled and provide a convenient way to define the fracture parameters. It is well known that these fracture modes are coupled in anisotropic materials. In the case of orthotropic materials also, coupling exists between the fracture modes, unless the crack plane coincides with one of the axes of orthotropy. The strength of coupling depends upon the orientation of the axes of orthotropy with respect to the crack plane and so the energy release rate components associated with each of the modes vary with crack orientation. The variation, of these energy release rate components with the crack orientation with respect to orthotropic axes, is analyzed in this paper. Results indicate that in addition to the orthotropic planes there exists other planes with reference to which fracture modes are uncoupled.
Resumo:
Diffusion such is the integrated diffusion coefficient of the phase, the tracer diffusion coefficient of species at different temperatures and the activation energy for diffusion, are determined in V3Si phase with A15 crystal structure. The tracer diffusion coefficient of Si Was found to be negligible compared to the tracer diffusion coefficient of V. The calculated diffusion parameters will help to validate the theoretical analysis of defect structure of the phase, which plays an important role in the superconductivity.
Resumo:
The random early detection (RED) technique has seen a lot of research over the years. However, the functional relationship between RED performance and its parameters viz,, queue weight (omega(q)), marking probability (max(p)), minimum threshold (min(th)) and maximum threshold (max(th)) is not analytically availa ble. In this paper, we formulate a probabilistic constrained optimization problem by assuming a nonlinear relationship between the RED average queue length and its parameters. This problem involves all the RED parameters as the variables of the optimization problem. We use the barrier and the penalty function approaches for its Solution. However (as above), the exact functional relationship between the barrier and penalty objective functions and the optimization variable is not known, but noisy samples of these are available for different parameter values. Thus, for obtaining the gradient and Hessian of the objective, we use certain recently developed simultaneous perturbation stochastic approximation (SPSA) based estimates of these. We propose two four-timescale stochastic approximation algorithms based oil certain modified second-order SPSA updates for finding the optimum RED parameters. We present the results of detailed simulation experiments conducted over different network topologies and network/traffic conditions/settings, comparing the performance of Our algorithms with variants of RED and a few other well known adaptive queue management (AQM) techniques discussed in the literature.
Resumo:
In the present investigation, two nozzle configurations are used for spray deposition, convergent nozzle (nozzle-A), and convergent nozzle with 2 mm parallel portion attached at its end (nozzle-C) without changing the exit area. First, the conditions for subambient aspiration pressure, i.e., pressure at the tip of the melt delivery tube, are established by varying the protrusion length of the melt delivery tube at different applied gas pressures for both of the nozzles. Using these conditions, spray deposits in a reproducible manner are successfully obtained for 7075 Al alloy. The effect of applied gas pressure, flight distance, and nozzle configuration on various characteristics of spray deposition, viz., yield, melt flow rate, and gas-to-metal ratio, is examined. The over-spray powder is also characterized with respect to powder size distribution, shape, and microstructure. Some of the results are explained with the help of numerical analysis presented in an earlier article.
Resumo:
Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.
Resumo:
A simple cconversence technique is applied to obtain accurate estimates of critical temperatures and critical it\ponmts of a few two- and threpdiniensional king models. When applied to the virial series for hard spheres and hard discs, this method predicts a divergence of the equation-of-state at the density of closest packing.
Resumo:
A method is presented for identification of parameters in unconfined aquifers from pumping tests, based on the optimisation of the objective function using the least squares approach. Four parameters are to be evaluated, namely: The hydraulic conductivity in the radial and the vertical directions, the storage coefficient and the specific yield. The sensitivity analysis technique is used for solving the optimisation problem. Besides eliminating the subjectivity involved in the graphical procedure, the method takes into account the field data at all time intervals without classifying them into small and large time intervals and does not use the approximation that the ratio of the storage coefficient to the specific yield tends to zero. Two illustrative examples are presented and it is found that the parameter estimates from the computational and graphical procedures differ fairly significantly.
Resumo:
The emission from neutral hydrogen (HI) clouds in the post-reionization era (z <= 6), too faint to be individually detected, is present as a diffuse background in all low frequency radio observations below 1420MHz. The angular and frequency fluctuations of this radiation (similar to 1 mK) are an important future probe of the large-scale structures in the Universe. We show that such observations are a very effective probe of the background cosmological model and the perturbed Universe. In our study we focus on the possibility of determining the redshift-space distortion parameter beta, coordinate distance r(nu), and its derivative with redshift r(nu)('). Using reasonable estimates for the observational uncertainties and configurations representative of the ongoing and upcoming radio interferometers, we predict parameter estimation at a precision comparable with supernova Ia observations and galaxy redshift surveys, across a wide range in redshift that is only partially accessed by other probes. Future HI observations of the post-reionization era present a new technique, complementing several existing ones, to probe the expansion history and to elucidate the nature of the dark energy.
Resumo:
A detailed analy~is on the propagation of a sinusoidal flood wave in a wide prismatic open channel b.as hen made by numc? ii.~ll~integrating We govemins nondimenional equations of unsteady flow in an open chamei. EmpE:dsis has been laid on the effect of wave parmefen on th propagation of 6.8 sinusoidal wave. Results show that the amount of subsidence is more in the case of small wave anplltude and wave duration cases. Further, wave duration has been noticed to have a relatively Vier influence on subsidence than wave amplitude. The speed at which the peak of the wave moves is observed to be a function of only the wave amplitude.
Resumo:
The variation of the interdiffusion coefficient with the change in composition in the Nb-Mo system is determined in the temperature range of 1800 °C to 1900 °C. It was found that the activation energy has a minimum at around 45 at. pct Nb. The values of the pre-exponential factor and the activation energy for diffusion are compared with the data available in the literature. Further, the impurity diffusion coefficients of Nb in Mo and Mo in Nb are calculated.
Resumo:
Differential scanning calorimetry (DSC) has been used to obtain kinetic and nucleation parameters for polymer crystallization under a non-isothermal mode of operation. The available isothermal nucleation growth-rate equation has been modified for non-isothermal kinetic analysis. The values of the nucleation constant (K g ) and surface free energies (sgr, sgr e ) have been obtained for i-polybutene-1, i-polypropylene, poly(L-lactic acid), and polyoxymethylene and are compared with those obtained from isothermal kinetic analysis; a good agreement in both is seen.
Resumo:
The effect of some experimental parameters, namely sample weight, particle size and its distribution, heating rate and flow rate of inert gas, on the fractional decomposition of calcium carbonate samples have been studied both experimentally and theoretical. The general conclusions obtained from theoretical analysis are corroborated qualitatively by the experimental data. The analysis indicates that the kinetic compensating effect may be partly due to the variations in experimental parameters for different experiments.