72 resultados para respect of the difference
em Indian Institute of Science - Bangalore - Índia
Resumo:
A recent, major, puzzle in the core-level photoemission spectra of doped manganites is the observation of a 1–2 eV wide shoulder with intensity varying with temperature T as the square of the magnetization over a T scale of order 200 K, an order of magnitude less than electronic energies. This is addressed and resolved here, by extending a recently proposed two-fluid polaron–mobile electron model for these systems to include core-hole effects. The position of the shoulder is found to be determined by Coulomb and Jahn-Teller energies, while its spectral weight is determined by the mobile electron energetics which is strongly T and doping dependent, due to annealed disorder scattering from the polarons and the t2g core spins. Our theory accounts quantitatively for the observed T dependence of the difference spectra, and furthermore, explains the observed correspondence between spectral changes due to increasing doping and decreasing T.
Resumo:
A cut (A, B) (where B = V - A) in a graph G = (V, E) is called internal if and only if there exists a vertex x in A that is not adjacent to any vertex in B and there exists a vertex y is an element of B such that it is not adjacent to any vertex in A. In this paper, we present a theorem regarding the arrangement of cliques in a chordal graph with respect to its internal cuts. Our main result is that given any internal cut (A, B) in a chordal graph G, there exists a clique with kappa(G) + vertices (where kappa(G) is the vertex connectivity of G) such that it is (approximately) bisected by the cut (A, B). In fact we give a stronger result: For any internal cut (A, B) of a chordal graph, and for each i, 0 <= i <= kappa(G) + 1 such that vertical bar K-i vertical bar = kappa(G) + 1, vertical bar A boolean AND K-i vertical bar = i and vertical bar B boolean AND K-i vertical bar = kappa(G) + 1 - i. An immediate corollary of the above result is that the number of edges in any internal cut (of a chordal graph) should be Omega(k(2)), where kappa(G) = k. Prompted by this observation, we investigate the size of internal cuts in terms of the vertex connectivity of the chordal graphs. As a corollary, we show that in chordal graphs, if the edge connectivity is strictly less than the minimum degree, then the size of the mincut is at least kappa(G)(kappa(G)+1)/2 where kappa(G) denotes the vertex connectivity. In contrast, in a general graph the size of the mincut can be equal to kappa(G). This result is tight.
Resumo:
The shear difference method which is commonly used for the separation of normal stresses using photoelastic techniques depends on the step-by-step integration of one of the differential equations of equilibrium. It is assumed that the isoclinic and the isochromatic parameters measured by the conventional methods pertain to the state of stress at the midpoint of the light path. In practice, a slice thin enough for the above assumption to be true and at the same time thick enough to give differences in the shear-stress values over the thickness is necessary. The paper discusses the errors introduced in the isoclinic and isochromatic values by the conventional methods neglecting the variation of stresses along the light path. It is shown that while the error introduced in the measurement of the isochromatic parameter may not be serious, the error caused in the isoclinic measurement may lead to serious errors. Since the shear-difference method involves step-by-step integration the error introduced will be of a cumulative nature.
Resumo:
his study elucidates some structural and biological features of galactose-binding variants of the cytotoxic proteins ricin and abrin. An isolation procedure is reported for ricin variants from Ricinus communis seeds by using lactamyl-Sepharose affinity matrix, similar to that reported previously for variants of abrin from Abrus precatorius seeds [Hegde, R., Maiti, T. K. & Podder, S. K. (1991) Anal. Biochem. 194, 101–109]. Ricin variants, subfractionated on carboxymethyl-Sepharose CL-6B ion-exchange chromatography, were characterized further by SDS/PAGE, IEF and a binding assay. Based on the immunological cross-reactivity of antibody raised against a single variant of each of ricin and abrin, it was established that all the variants of the corresponding type are immunologically indistinguishable. Analysis of protein titration curves on an immobilized pH gradient indicated that variants of abrin I differ from other abrin variants, mainly in their acidic groups and that variance in ricin is a cause of charge substitution. Detection of subunit variants of proteins by two-dimensional gel electrophoresis showed that there are twice as many subunit variants as there are variants of holoproteins, suggesting that each variant has a set of subunit variants, which, although homologous, are not identical to the subunits of any other variant with respect to pI. Seeds obtained from polymorphic species of R. communis showed no difference in the profile of toxin variants, as analyzed by isoelectric focussing. Toxin variants obtained from red and white varieties of A. precatorius, however, showed some difference in the number of variants as well as in their relative intensities. Furthermore, variants analyzed from several single seeds of A. precatorius red type revealed a controlled distribution of lectin variants in three specific groups, indicating an involvement of at least three genes in the production of Abrus lectins. The complete absence or presence of variants in each group suggested a post-translational differential proteolytic processing, a secondary event in the production of abrin variants.
Resumo:
We investigate an optical waveguide system consisting of an unclad fiber core suspended at a constant distance parallel to the surface of a planar waveguide. The coupling and propagation of light in the combined system is studied using the three-dimensional explicit finite difference beam propagation method with a nonuniform mesh configuration. The power loss in the fiber and the field distribution in the waveguide are studied as a function of various parameters, such as index changes, index profile, and propagation distance, for the combined system.
Resumo:
We assume the large-scale diffuse magnetic field of the Sun to originate from the poloidal component of a dynamo operating at the base of the convection zone, whereas the sunspots are due to the toroidal component. The evolution of the poloidal component is studied to model the poleward migration of the diffuse field seen on the solar surface and the polar reversal at the time of sunspot maxima (Dikpati and Choudhuri 1994, 1995).
Resumo:
For the successful performance of a granular filter medium, existing design guidelines, which are based on the particle size distribution (PSD) characteristics of the base soil and filter medium, require two contradictory conditions to be satisfied, viz., soil retention and permeability. In spite of the wider applicability of these guidelines, it is well recognized that (i) they are applicable to a particular range of soils tested in the laboratory, (ii) the design procedures do not include performance-based selection criteria, and (iii) there are no means to establish the sensitivity of the important variables influencing performance. In the present work, analytical solutions are developed to obtain a factor of safety with respect to soil-retention and permeability criteria for a base soil - filter medium system subjected to a soil boiling condition. The proposed analytical solutions take into consideration relevant geotechnical properties such as void ratio, permeability, dry unit weight, effective friction angle, shape and size of soil particles, seepage discharge, and existing hydraulic gradient. The solution is validated through example applications and experimental results, and it is established that it can be used successfully in the selection as well as design of granular filters and can be applied to all types of base soils.
Resumo:
C60Br8, unlike C60Br6 and C60Cl6, forms a solid charge-transfer compound with tetrathiafulvalene (TTF), the composition being C60Br8(TTF)(8). The unique complex-forming property of C60Br8 can be understood on the basis of the electronic structures of the halogenated derivatives of C-60. Molecular orbital calculations show that the low LUMO energy of C60Br8 compared with the other halogen derivatives renders the formation of the complex with TTF favourable, the four virtual LUMOs being able to accept 8 electrons. The Raman spectrum of C60Br8(TTF)(8) shows a marked softening of the bands (-46 cm(-1) on average) with respect to C60Br8 suggesting that indeed 8 electrons are transferred per C60Br8 molecule, one from each TTF molecule. The complex is weakly paramagnetic and shows a magnetic transition around 80 K.
Resumo:
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.
Resumo:
Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both 't Hooft-Veltman and Bardeen prescriptions for γ5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect to the renormalizability of supersymmetric models.
Resumo:
Principal component analysis is applied to derive patterns of temporal variation of the rainfall at fifty-three stations in peninsular India. The location of the stations in the coordinate space determined by the amplitudes of the two leading eigenvectors is used to delineate them into eight clusters. The clusters obtained seem to be stable with respect to variations in the grid of stations used. Stations within any cluster occur in geographically contiguous areas.
Resumo:
The work reported herein is part of an on-going programme to develop a computer code which, given the geometrical, process and material parameters of the forging operation, is able to predict the die and the billet cooling/heating characteristics in forging production. The code has been experimentally validated earlier for a single forging cycle and is now validated for a small batch production. To facilitate a step-by-step development of the code, the billet deformation has so far been limited to its surface layers, a situation akin to coining. The code has been used here to study the effects of die preheat-temperature, machine speed and rate of deformation the cooling/heating of the billet and the dies over a small batch of 150 forgings. The study shows: that there is a pre-heat temperature at which the billet temperature changes little from one forging to the next; that beyond a particular number of forgings, the machine speed ceases to have any pronounced influence on the temperature characteristics of the billet; and that increasing the rate of deformation reduces the heat loss from the billet and gives the billet a stable temperature profile with respect to the number of forgings. The code, which is simple to use, is being extended to bulk-deformation problems. Given a practical range of possible machine, billet and process specifics, the code should be able to arrive at a combination of these parameters which will give the best thermal characteristics of the die-billet system. The code is also envisaged as being useful in the design of isothermal dies and processes.
Resumo:
The crystal structure of TANDEM (des-N-tetramethyltriostin A), a synthetic analogue of the quinoxaline antibiotic triostin A, has been determined independently at -135 and 7 'C and refined to R values of 0.088 and 0.147, respectively. The molecule has approximate 2-fold symmetry, with the quinoxaline chromophores and the disulfide cross-bridge projecting from opposite sides of the peptide ring. The quinoxaline groups are nearly parallel to each other and separated by about 6.5 A. The peptide backbone resembles a distorted antiparallel 13 ribbon joined by intramolecular hydrogen bonds N-H(LVal)--O(L-Ala). At low temperatures, the TANDEM molecule is surrounded by a regular first- and second-order hydration sphere containing 14 independent water molecules. At room temperature, only the first-order hydration shell is maintained. Calculations of the interplanar separation of the quinoxaline groups as a function of their orientation with respect to the peptide ring support the viability of TANDEM to intercalate bifunctionally into DNA.
Resumo:
Preferred conformations of the competitive inhibitors glycyl-L-phenylalanine and glycyl-D-phenylalanine and their mode of binding to thermolysin have been studied. The difference in configuration is shown to affect significantly the mode of binding to thermolysin. Gly-D-Phe prefers to enter the active site in the global minimum conformation whereas Gly-L-Phe may enter in a higher energy conformation. Moreover, D-enantiomer is shown to have a better fit than the L-counterpart in the active site.
Resumo:
Bees of the genus Apis are important foragers of nectar and pollen resources. Although the European honeybee, Apis mellifera, has been well studied with respect to its sensory abilities, learning behaviour and role as pollinators, much less is known about the other Apis species. We studied the anatomical spatial resolution and absolute sensitivity of the eyes of three sympatric species of Asian honeybees, Apis cerana, Apis florea and Apis dorsata and compared them with the eyes of A. mellifera. Of these four species, the giant honeybee A. dorsata (which forages during moonlit nights) has the lowest spatial resolution and the most sensitive eyes, followed by A. mellifera, A. cerana and the dwarf honeybee, A. florea (which has the smallest acceptance angles and the least sensitive eyes). Moreover, unlike the strictly diurnal A. cerana and A. florea, A. dorsata possess large ocelli, a feature that it shares with all dim-light bees. However, the eyes of the facultatively nocturnal A. dorsata are much less sensitive than those of known obligately nocturnal bees such as Megalopta genalis in Panama and Xylocopa tranquebarica in India. The differences in sensitivity between the eyes of A. dorsata and other strictly diurnal Apis species cannot alone explain why the former is able to fly, orient and forage at half-moon light levels. We assume that additional neuronal adaptations, as has been proposed for A. mellifera, M. genalis and X. tranquebarica, might exist in A. dorsata.