19 resultados para research capacity strengthening

em Indian Institute of Science - Bangalore - Índia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The world is in the midst of a biodiversity crisis, threatening essential goods and services on which humanity depends. While there is an urgent need globally for biodiversity research, growing obstacles are severely limiting biodiversity research throughout the developing world, particularly in Southeast Asia. Facilities, funding, and expertise are often limited throughout this region, reducing the capacity for local biodiversity research. Although western scientists generally have more expertise and capacity, international research has sometimes been exploitative ``parachute science,'' creating a culture of suspicion and mistrust. These issues, combined with misplaced fears of biopiracy, have resulted in severe roadblocks to biodiversity research in the very countries that need it the most. Here, we present an overview of challenges to biodiversity research and case studies that provide productive models for advancing biodiversity research in developing countries. Key to success is integration of research and education, a model that fosters sustained collaboration by focusing on the process of conducting biodiversity research as well as research results. This model simultaneously expands biodiversity research capacity while building trust across national borders. It is critical that developing countries enact policies that protect their biodiversity capital without shutting down international and local biodiversity research that is essential to achieve the long-term sustainability of biodiversity, promoting food security and economic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two algorithms that improve upon the sequent-peak procedure for reservoir capacity calculation are presented. The first incorporates storage-dependent losses (like evaporation losses) exactly as the standard linear programming formulation does. The second extends the first so as to enable designing with less than maximum reliability even when allowable shortfall in any failure year is also specified. Together, the algorithms provide a more accurate, flexible and yet fast method of calculating the storage capacity requirement in preliminary screening and optimization models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiNi1/3Mn1/3Co1/3O2, a high voltage and high-capacity cathode material for Li-ion batteries, has been synthesized by three different rapid synthetic methods. viz. nitrate-melt decomposition, combustion and sol-gel methods. The first two methods are ultra rapid and a time period as small as 15 min is sufficient to prepare nano-crystalline LiNi1/3Mn1/3Co1/3O2. The processing parameters in obtaining the best performing materials are optimized for each process and their electrochemical performance is evaluated in Li-ion cells. The combustion-derived LiNi1/3Mn1/3Co1/3O2 sample exhibits large extent of cation mixing (10%) while the other two methods yield LiNi1/3Mn1/3Co1/3O2 with cation mixing <5%. LiNi1/3Mn1/3Co1/3O2 prepared by nitrate-melt decomposition method exhibits superior performance as Li-ion battery cathode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen storage in the three-dimensional carbon foams is analyzed using classical grand canonical Monte Carlo simulations. The calculated storage capacities of the foams meet the material-based DOE targets and are comparable to the capacities of a bundle of well-separated similar diameter open nanotubes. The pore sizes in the foams are optimized for the best hydrogen uptake. The capacity depends sensitively on the C-H-2 interaction potential, and therefore, the results are presented for its ``weak'' and ``strong'' choices, to offer the lower and upper bounds for the expected capacities. Furthermore, quantum effects on the effective C-H-2 as well as H-2-H-2 interaction potentials are considered. We find that the quantum effects noticeably change the adsorption properties of foams and must be accounted for even at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of anchor width (B) on vertical uplift resistance of a strip anchor plate has been examined. The anchor was embedded horizontally in a granular medium. The analysis was performed using lower bound finite element limit analysis and linear programming. An iterative procedure, proposed recently by the authors, was implemented to incorporate the variation of phi with sigma(m). It is noted that for a given embedment ratio, with a decrease in anchor width (B), (i) the uplift factor (F-gamma) increases continuously and (ii) the average ultimate uplift pressure (q(u)) decreases quite significantly. The scale effect becomes more pronounced at greater embedment ratios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of finding the horizontal pullout capacity of vertical anchors embedded in sands with the inclusion of pseudostatic horizontal earthquake body forces, was tackled in this note. The analysis was carried out using an upper bound limit analysis, with the consideration of two different collapse mechanisms: bilinear and composite logarithmic spiral rupture surfaces. The results are presented in nondimensional form to find the pullout resistance with changes in earthquake acceleration for different combinations of embedment ratio of the anchor (lambda), friction angle of the soil (phi), and the anchor-soil interface wall friction angle (delta). The pullout resistance decreases quite substantially with increases in the magnitude of the earthquake acceleration. For values of delta up to about 0.25-0.5phi, the bilinear and composite logarithmic spiral rupture surfaces gave almost identical answers, whereas for higher values of delta, the choice of the logarithmic spiral provides significantly smaller pullout resistance. The results compare favorably with the existing theoretical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is being realized that the traditional closed-door and market driven approaches for drug discovery may not be the best suited model for the diseases of the developing world such as tuberculosis and malaria, because most patients suffering from these diseases have poor paying capacity. To ensure that new drugs are created for patients suffering from these diseases, it is necessary to formulate an alternate paradigm of drug discovery process. The current model constrained by limitations for collaboration and for sharing of resources with confidentiality hampers the opportunities for bringing expertise from diverse fields. These limitations hinder the possibilities of lowering the cost of drug discovery. The Open Source Drug Discovery project initiated by Council of Scientific and Industrial Research, India has adopted an open source model to power wide participation across geographical borders. Open Source Drug Discovery emphasizes integrative science through collaboration, open-sharing, taking up multi-faceted approaches and accruing benefits from advances on different fronts of new drug discovery. Because the open source model is based on community participation, it has the potential to self-sustain continuous development by generating a storehouse of alternatives towards continued pursuit for new drug discovery. Since the inventions are community generated, the new chemical entities developed by Open Source Drug Discovery will be taken up for clinical trial in a non-exclusive manner by participation of multiple companies with majority funding from Open Source Drug Discovery. This will ensure availability of drugs through a lower cost community driven drug discovery process for diseases afflicting people with poor paying capacity. Hopefully what LINUX the World Wide Web have done for the information technology, Open Source Drug Discovery will do for drug discovery. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertical uplift resistance of a group of two horizontal coaxial strip anchors, embedded in a general c-phi soil (where c is the unit cohesion and phi is the soil friction angle), has been determined by using the lower bound finite element limit analysis. The variation of uplift factors F-c and F-gamma, due to the components of soil cohesion and unit weight, respectively, with changes in depth (H)/width (B) has been established for different values of vertical spacing (S)/B. As compared to a single isolated anchor, the group of two anchors provides a significantly greater magnitude of F-c for phi <= 20 degrees and with H/B >= 3. The magnitude of F-c becomes almost maximum when S/B is kept closer to 0.5H/B. On the other hand, with the same H/B, as compared to a single anchor, hardly any increase in F-gamma occurs for a group of two anchors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many common activities, like reading, scanning scenes, or searching for an inconspicuous item in a cluttered environment, entail serial movements of the eyes that shift the gaze from one object to another. Previous studies have shown that the primate brain is capable of programming sequential saccadic eye movements in parallel. Given that the onset of saccades directed to a target are unpredictable in individual trials, what prevents a saccade during parallel programming from being executed in the direction of the second target before execution of another saccade in the direction of the first target remains unclear. Using a computational model, here we demonstrate that sequential saccades inhibit each other and share the brain's limited processing resources (capacity) so that the planning of a saccade in the direction of the first target always finishes first. In this framework, the latency of a saccade increases linearly with the fraction of capacity allocated to the other saccade in the sequence, and exponentially with the duration of capacity sharing. Our study establishes a link between the dual-task paradigm and the ramp-to-threshold model of response time to identify a physiologically viable mechanism that preserves the serial order of saccades without compromising the speed of performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doping of TiO2 with a suitable metal ion where dopant redox potential couples with that of titanium (Ti4+) and act as catalyst for additional reduction of Ti4+ to Ti2+ (Ti4+ -> Ti3+ -> Ti2+) is envisaged here to enhance lithium storage even higher than one Li/TiO2. Accordingly, 10 atom% Pt ion substituted TiO2, Ti0.9Pt0.1O2 nanocrystallites was synthesized by sonochemical method using diethylenetriamine (DETA) as complexing agent. Powder X-ray diffraction pattern (XRD), Rietveld refinement and TEM study reveals that Ti0.9Pt0.1O2 nanocrystallites of similar to 4 nm size crystallize in anatase structure. X-ray photo-electron spectroscopy (XPS) study confirms that and both Ti and Pt are in 4+ oxidation state. Due to Pt4+ ion substitution in TiO2, reducibility of TiO2 was enhanced and Ti4+ was reduced up to Ti2+ state via coupling of Pt states (Pt4+/Pt2+/Pt-0) with Ti states (Ti4+/Ti3+/Ti2+). Galvanostatic cycling of Ti0.9Pt0.1O2 against lithium showed very high capacity of 430 mAhg(-1) or exchange of similar to 1.5Li/Ti0.9Pt0.1O2. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.029208jes] All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using first principles calculations, we show that the storage capacity as well as desorption temperature of MOFs can be significantly enhanced by decorating pyridine (a common linker in MOFs) by metal atoms. The storage capacity of metal-pyridine complexes are found to be dependent on the type of decorating metal atom. Among the 3d transition metal atoms, Sc turns out to be the most efficient storing unto four H-2 molecules. Most importantly, Sc does not suffer dimerisation on the surface of pyridine, keeping the storage capacity of every metal atom intact. Based on these findings, we propose a metal-decorated pyridine-based MOFs, which has potential to meet the required H-2 storage capacity for vehicular usage. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pullout capacity of an inclined strip plate anchor embedded in sand has been determined by using the lower bound theorem of the limit analysis in combination with finite elements and linear optimization. The numerical results in the form of pullout factors have been presented by changing gradually the inclination of the plate from horizontal to vertical. The pullout resistance increases significantly with an increase in the horizontal inclination (theta) of the plate especially for theta > 30 degrees. The effect of the anchor plate-soil interface friction angle (delta) on the pullout resistance becomes extensive for a vertical anchor but remains insignificant for a horizontal anchor. The development of the failure zone around the anchor plates was also studied by varying theta and delta. The results from the analysis match well with the theoretical and experimental results reported in literature.