206 resultados para rejection: antibody-mediated (ABMR)
em Indian Institute of Science - Bangalore - Índia
Resumo:
The epitopic core sequences recognized by three monoclonal antibodies raised to chicken riboflavin carrier protein (RCP) were mapped to the C-terminal tail-end of the protein using the pepscan method A 21-residue synthetic peptide corresponding to residues 200-219 of the protein and comprising the regions corresponding to the antibodies was synthesized. Administration of polyclonal antibodies specific to this peptide led to termination of early pregnancy in mice. Also, active immunization of rats with the peptide-purified protein derivative conjugate inhibited establishment of pregnancy. These results demonstrate the functional importance of the C-terminal 200-219 region of chicken RCP. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Abzymes are immunoglobulins endowed with enzymatic activities. The catalytic activity of an abzyme resides in the variable domain of the antibody, which is constituted by the close spatial arrangement of amino acid residues involved in catalysis. The origin of abzymes is conferred by the innate diversity of the immunoglobulin gene repertoire. Under deregulated immune conditions, as in autoimmune diseases, the generation of abzymes to self-antigens could be deleterious. Technical advancement in the ability to generate monoclonal antibodies has been exploited in the generation of abzymes with defined specificities and activities. Therapeutic applications of abzymes are being investigated with the generation of monoclonal abzymes against several pathogenesis-associated antigens. Here, we review the different contexts in which abzymes are generated, and we discuss the relevance of monoclonal abzymes for the treatment of human diseases.
Resumo:
In this study we investigated the possibility of treating Heymann's Nephritis (HN) by destroying antibody producing cells by targetting a toxin, gelonin - conjugated to gp330, the renal brush border antigen. HN was induced in rats by immunizing them with purified gp330. The gelonin-gp330 conjugate was administered 12 days after the antigenic challenge. Serum was screened for circulating antibodies. Proteinurea was estimated. The gp330-gelonin conjugate-treated animals had a circulating antibody titre in the serum much lower than that of diseased (untreated) animals. Proteinurea seen in diseased animals was not observed in treated animals. This work suggests the possibility of using a toxin-antigen conjugate for immunomodulating antibody mediated autoimmune renal disease.
Replication of Japanese encephalitis virus in mouse brain induces alterations in lymphocyte response
Resumo:
The experimental model using intracerebral (i.c.) challenge was employed in many studies evaluating the protection against disease induced by Japanese encephalitis virus (JEV). We investigated alterations in peripheral lymphocyte response caused by i.c. infection of mice with JEV. Splenocytes from the i.c.-infected mice showed suppressed proliferative response to concanavalin A (con A) and anti-CD3 antibody stimulation. At the same time, the expression of CD25 (IL-2R) and production of IL-2 was inhibited. Addition of anti-CD28 antibody restored the decreased anti-CD3 antibody-mediated proliferation in the splenocytes. Moreover, the number of con A-stimulated cells secreting IL-4 was significantly reduced in splenocytes from i.c.-infected mice. These studies suggested that the i.c. infection with JEV might involve additional immune modulation effects due to massive virus replication in the brain.
Resumo:
Heymann's nephritis (HN) in rats induced by injecting renal proximal tubule brush border protein gp330, is an animal model replicating human autoimmune membranous glomerulonephritis(1). Endogenous IgG gets deposited between the foot processes in the epithelial side of the glomerulus and causes complement-mediated membrane injury, leading to proteinuria and basement membrane thickening. We investigated the effect of a toxin, gelonin conjugated to gp330 and targetted against antigp330-producing cells in ameliorating immune injury and nephrotic state in rats. The groups of animals injected with purified gp330 revealed by immunofluorescence, characteristic granular deposits of IgG along the basement membrane. The rats intravenously injected with gelonin gp330 conjugate, four days after the antigenic challenge with gp330 in two doses, showed amelioration of the nephrotic state and appreciable reduction in glomerular IgG deposits against immune injury. This substantiates our earlier biochemical results and corroborates the possibility of using toxins conjugated to specific antigen in treating antibody-mediated autoimmune diseases.
Resumo:
Japanese encephalitis virus (JEV) is a single stranded RNA virus that infects the central nervous system leading to acute encephalitis in children. Alterations in brain endothelial cells have been shown to precede the entry of this flavivirus into the brain, but infection of endothelial cells by JEV and their consequences are still unclear. Productive JEV infection was established in human endothelial cells leading to IFN-beta and TNF-alpha production. The MHC genes for HLA-A, -B, -C and HLA-E antigens were upregulated in human brain microvascular endothelial cells, the endothelial-like cell line, ECV 304 and human foreskin fibroblasts upon JEV infection. We also report the release/shedding of soluble HLA-E (sHLA-E) from JEV infected human endothelial cells for the first time. This shedding of sHLA-E was blocked by an inhibitor of matrix metalloproteinases (MMP). In addition, MMP-9, a known mediator of HLA solubilisation was upregulated by JEV. In contrast, human fibroblasts showed only upregulation of cell-surface HLA-E. Addition of UV inactivated JEV-infected cell culture supernatants stimulated shedding of sHLA-E from uninfected ECV cells indicating a role for soluble factors/cytokines in the shedding process. Antibody mediated neutralization of TNF-alpha as well as IFNAR receptor together not only resulted in inhibition of sHLA-E shedding from uninfected cells, it also inhibited HLA-E and MMP-9 gene expression in JEV-infected cells. Shedding of sHLA-E was also observed with purified TNF-alpha and IFN-beta as well as the dsRNA analog, poly (I:C). Both IFN-beta and TNF-alpha further potentiated the shedding when added together. The role of soluble MHC antigens in JEV infection is hitherto unknown and therefore needs further investigation.
Resumo:
When administered orally, Phyllanthus emblica, an excellent source of vitamin C (ascorbate), has been found to enhance natural killer (NK) cell activity and antibody dependent cellular cytotoxicity (ADCC) in syngeneic BALB/c mice, bearing Dalton's lymphoma ascites (DLA) tumor. P. emblica elicited a 2-fold increase in splenic NK cell activity on day 3 post tumor inoculation. Enhanced activity was highly significant on days 3, 5, 7 and 9 after tumor inoculation with respect to the untreated tumor bearing control. A significant enhancement in ADCC was documented on days 3, 7, 9, 11 and 13 in drug treated mice as compared to the control. An increase in life span (ILS) of 35% was recorded in tumor bearing mice treated with P. emblica. This increased survival was completely abrogated when NK cell and killer (K) cell activities were depleted either by cyclophosphamide or anti-asialo-GM, antibody treatment. These results indicate: (a) an absolute requirement for a functional NK cell or K cell population in order that P. emblica can exert its effect on tumor bearing animals, and (b) the antitumor activity of P. emblica is mediated primarily through the ability of the drug to augment natural cell mediated cytotoxicity.
Resumo:
Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab Ea-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS-albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small nonnuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex. (C) 1994 Academic Press, Inc.
Resumo:
The foetus is dependent on its mother for passive immunity involving receptor-mediated specific transport of antibodies. IgG antibody is present in highest concentration in serum and is the only antibody type that can cross the placenta efficiently, except for its IgG2 subclass. Most of the pathogenic manifestations affecting the foetus involve capsular antigens and polysaccharides of pathogens and it is known that immune response to these antigens is primed to the predominant production of IgG2 type of antibody. Paradoxically, the IgG2 subclass cannot cross the placenta and neutralize such antigens; therefore, infections related to these antigens may persist and can lead to serious conditions like miscarriage and stillbirth. This article describes in brief the properties of IgG subclasses, intrauterine infections seen during pregnancy and discusses possible IgG-based strategies to manage infections to afford protection to the foetus.
Resumo:
Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74-123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1: 10 molar concentration of abrin: antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin's toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.
Resumo:
Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl(+) cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl(+) CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl(+) cells. NAC enhances imatinib-induced apoptosis of Bcr-Abl(+) cells by endothelial nitric oxide synthase-mediated production of nitric oxide.
Resumo:
Diels-Alder reaction of the dienone 12, obtained by C-alkylation of sodium 2,6-dimethylphenoxide, with acrylonitrile and phenyl vinyl sulfones generate the enynes 14 and 17. Tributyltin radical addition to the terminal acetylene in 14 and 17 lead to the vinylstannanes 15 and 18 via 5-exo trig cyclisation of the resulting vinyl radical, which on oxidative cleavage furnishes the isotwistane-diones 16 and 19. Reductive desulfonylation of the diketosulfone 19 furnishes the dione 11, constituting a formal total synthesis of 2-pupukeanone 5 and 2-isocyanopupukeanone 3.
Resumo:
We have developed a general and efficient method for the stereoselective construction of pyrimidine-based pyranosyl C-2 amino acid nucleosides using NIS-mediated ring opening of 1,2-cyclopropanated sugar derivatives. This methodology has been successfully extended to the synthesis of furanosyl nucleosides, Which have potential applications in the development of novel, nontoxic antifungal therapeutics.
Resumo:
We had earlier proposed a hypothesis to explain the mechanism of perpetuation of immunological memory based on the operation of idiotypic network in the complete absence of antigen. Experimental evidences were provided for memory maintenance through anti-idiotypic antibody (Ab2) carrying the internal image of the antigen. In the present work, we describe a structural basis for such memory perpetuation by molecular modeling and structural analysis studies. A three-dimensional model of Ab2 was generated and the structure of the antigenic site on the hemagglutinin protein H of Rinderpest virus was modeled using the structural template of hemagglutinin protein of Measles virus. Our results show that a large portion of heavy chain containing the CDR regions of Ab2 resembles the domain of the hemagglutinin housing the epitope regions. The similarity demonstrates that an internal image of the H antigen is formed in Ab2, which provides a structural basis for functional mimicry demonstrated earlier. This work brings out the importance of the structural similarity between a domain of hemagglutinin protein to that of its corresponding Ab2. It provides evidence that Ab2 is indeed capable of functioning as surrogate antigen and provides support to earlier proposed relay hypothesis which has provided a mechanism for the maintenance of immunological memory.