47 resultados para regional accessibility indicators

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up-to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat-TM/ETM+, IRS-ICID LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (similar to 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 in), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end-members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications. Index Terms-Remote sensing, digital

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global climate model experiment is performed to evaluate the effect of irrigation on temperatures in several major irrigated regions of the world. The Community Atmosphere Model, version 3.3, was modified to represent irrigation for the fraction of each grid cell equipped for irrigation according to datasets from the Food and Agriculture Organization. Results indicate substantial regional differences in the magnitude of irrigation-induced cooling, which are attributed to three primary factors: differences in extent of the irrigated area, differences in the simulated soil moisture for the control simulation (without irrigation), and the nature of cloud response to irrigation. The last factor appeared especially important for the dry season in India, although further analysis with other models and observations are needed to verify this feedback. Comparison with observed temperatures revealed substantially lower biases in several regions for the simulation with irrigation than for the control, suggesting that the lack of irrigation may be an important component of temperature bias in this model or that irrigation compensates for other biases. The results of this study should help to translate the results from past regional efforts, which have largely focused on the United States, to regions in the developing world that in many cases continue to experience significant expansion of irrigated land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

previous termBull spermnext term heads and tails have been separated by proteolytic digestion (trypsin) and previous termplasma membranesnext term have been isolated, using discontinuous sucrose density gradient centrifugation. previous termPlasma membranenext term bound Ca2+-ATPase is shown to be associated mostly with the tail previous termmembranes.next term Pyrene excimer fluorescence and diphenylhexatriene fluorescence polarization experiments indicate a more fluid lipid phase in the tail region. Differences in surface charge distribution have been found, using 1-anilinonaphthalene-8-sulfonate and Tb3+ as fluorescent probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bull sperm heads and tails have been separated by proteolytic digestion (trypsin) and plasma membranes have been isolated, using discontinuous sucrose density gradient centrifugation. Plasma membrane bound Ca2+-ATPase is shown to be associated mostly with the tail membranes. Pyrene excimer fluorescence and diphenylhexatriene fluorescence polarization experiments indicate a more fluid lipid phase in the tail region. Differences in surface charge distribution have been found, using 1-anilinonaphthalene-8-sulfonate and Tb3+ as fluorescent probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed-species bird flocks are attractive models for the investigation of geographical variation in animal communities, as they represent a subset of the avifauna in most forested regions of the world. Yet studies of the regional variation in flock size and the composition of flocks are few, due to the predominance of studies carried out at single study site. Here, we review nine studies of mixed-species flocks conducted at 16 sites along the Western Ghats in India and in Sri Lanka. We find that flock size varies as much within this region as it does globally, with observation time being a confounding variable. Flock composition, however, is predictably related to elevation. Flocks at high elevations (>1200 m) in the Western Ghats strongly resemble flocks at high elevations in the mountain ranges of Sri Lanka in their composition, especially at the family level. We compare these flocks to flocks of other regions and make recommendations on study methodology that can facilitate comparisons across studies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional impacts of climate change remain subject to large uncertainties accumulating from various sources, including those due to choice of general circulation models (GCMs), scenarios, and downscaling methods. Objective constraints to reduce the uncertainty in regional predictions have proven elusive. In most studies to date the nature of the downscaling relationship (DSR) used for such regional predictions has been assumed to remain unchanged in a future climate. However,studies have shown that climate change may manifest in terms of changes in frequencies of occurrence of the leading modes of variability, and hence, stationarity of DSRs is not really a valid assumption in regional climate impact assessment. This work presents an uncertainty modeling framework where, in addition to GCM and scenario uncertainty, uncertainty in the nature of the DSR is explored by linking downscaling with changes in frequencies of such modes of natural variability. Future projections of the regional hydrologic variable obtained by training a conditional random field (CRF) model on each natural cluster are combined using the weighted Dempster-Shafer (D-S) theory of evidence combination. Each projection is weighted with the future projected frequency of occurrence of that cluster (''cluster linking'') and scaled by the GCM performance with respect to the associated cluster for the present period (''frequency scaling''). The D-S theory was chosen for its ability to express beliefs in some hypotheses, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The methodology is tested for predicting monsoon streamflow of the Mahanadi River at Hirakud Reservoir in Orissa, India. The results show an increasing probability of extreme, severe, and moderate droughts due to limate change. Significantly improved agreement between GCM predictions owing to cluster linking and frequency scaling is seen, suggesting that by linking regional impacts to natural regime frequencies, uncertainty in regional predictions can be realistically quantified. Additionally, by using a measure of GCM performance in simulating natural regimes, this uncertainty can be effectively constrained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The channel volatiles in cordierites of the Precambrian high-grade metapelites from southern and eastern Karnataka northern Tamil Nadu and southern Kerala were analyzed in an attempt to use them as metamorphic fluid fugacity indicators. Infrared powder absorption spectra, used to characterize the channel volatiles, showed that all the 21 analyzed cordierites have H2O and CO2 as the channel volatiles, indicating the predominantly H2O-CO2 composition of the metamorphic fluids. The H2O fraction in the metamorphic fluid was computed using a published thermodynamic method in conjunction with gravimetrically determined cordierite channel H2O content, available P - T estimates and an appropriate equation of state for the H2O - CO2 fluids. The IR data and these calculated X(H2O) values indicate an overall correlation between the variation in the relative proportion of H2O and CO2 in the fluids and the metamorphic grade. The average computed X(H2O) values are: 0.78 for the amphibolite facies eastern Karnataka pelites, 0.36 for the amphibolite facies southern Karnataka pelites, 0.19 for the southern Karnataka transitional zone rocks and 0.13 for the northern Tamil Nadu granulites. Consistently low X(H2O) values, at about 0.2, were obtained for the orthopyroxene-bearing assemblages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article addresses uncertainty effect on the health monitoring of a smart structure using control gain shifts as damage indicators. A finite element model of the smart composite plate with surface-bonded piezoelectric sensors and actuators is formulated using first-order shear deformation theory and a matrix crack model is integrated into the finite element model. A constant gain velocity/position feedback control algorithm is used to provide active damping to the structure. Numerical results show that the response of the structure is changed due to matrix cracks and this change can be compensated by actively tuning the feedback controller. This change in control gain can be used as a damage indicator for structural health monitoring. Monte Carlo simulation is conducted to study the effect of material uncertainty on the damage indicator by considering composite material properties and piezoelectric coefficients as independent random variables. It is found that the change in position feedback control gain is a robust damage indicator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up- to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat- TM/ETM+, IRS-1C/D LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (~ 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 m), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end- members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feature selection is an important first step in regional hydrologic studies (RHYS). Over the past few decades, advances in data collection facilities have resulted in development of data archives on a variety of hydro-meteorological variables that may be used as features in RHYS. Currently there are no established procedures for selecting features from such archives. Therefore, hydrologists often use subjective methods to arrive at a set of features. This may lead to misleading results. To alleviate this problem, a probabilistic clustering method for regionalization is presented to determine appropriate features from the available dataset. The effectiveness of the method is demonstrated by application to regionalization of watersheds in conterminous United States for low flow frequency analysis. Plausible homogeneous regions that are formed by using the proposed clustering method are compared with those from conventional methods of regionalization using L-moment based homogeneity tests. Results show that the proposed methodology is promising for RHYS.