62 resultados para recombinant Escherichia coli
em Indian Institute of Science - Bangalore - Índia
Resumo:
Diaminopropionate ammonia-lyase gene from Escherichia coli and Salmonella typhimurium was cloned and the overexpressed enzymes were purified to homogeneity. The k(cat) Values, determined for the recombinant enzymes with DL-DAP, D-serine, and L-serine as substrates, showed that the enzyme from S. typhimurium was more active than that from E coli and the K-m values were found to be similar. The purified enzymes had an absorption maximum (lambda(max)) at 412 nm, typical of PLP dependent enzymes. A red shift in lambda(max) was observed immediately after the addition Of 10 MM DL-DAP, which returned to the original lambda(max) of 412 nm in about 4 min. This red shift might reflect the formation of an external aldimine and/or other transient intermediates of the reaction. The apoenzyme of E coli and S. typhimurium prepared by treatment With L-cysteine could be partially (60%) reconstituted by the addition of PLP. The holo, apo, and the reconstituted enzymes were shown to be present as homo dimers by size exclusion chromatography. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
We have designed a novel coupled transcriptional construct wherein Escherichia coil uracil DNA glycosylase (UDC:) and Bacillus subtilis phage PBS-2 encoded uracil DNA glycosylase inhibitor protein (Ugi) genes were cloned in tandem, downstream of an inducible promoter (P-trc). Use of this bicistronic operon has allowed purification of large amounts of UDG-Ugi complex formed in vivo. The system has also been exploited for purification of large amounts of Ugi. While establishing the expression system, one of the constructs showed detectable suppression of UAG termination codon and resulted in accumulation of a minor population of a putative readthrough polypeptide cor responding to UDG. We discuss the likely occurrence of such a phenomenon in overproduction of other recombinant proteins. Finally, the usefulness of the operon construct in convenient mutational analysis to study the mechanism of UDG-Ugi interaction is also discussed.
Resumo:
The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.
Resumo:
The coat protein gene of physalis mottle tymovirus (PhMV) was over expressed in Escherichia coli using pET-3d vector. The recombinant protein was found to self assemble into capsids in vivo. The purified recombinant capsids had an apparent s value of 56.5 S and a diameter of 29(±2) nm. In order to establish the role of amino and carboxy-terminal regions in capsid assembly, two amino-terminal deletions clones lacking the first 11 and 26 amino acid residues and two carboxy-terminal deletions lacking the last five and ten amino acid residues were constructed and overexpressed. The proteins lacking N-terminal 11 (PhCPN1) and 26 (PhCPN2) amino acid residues self assembled into T = 3 capsids in vivo, as evident from electron microscopy, ultracentrifugation and agarose gel electrophoresis. The recombinant, PhCPN1 and PhCPN2 capsids were as stable as the empty capsids formed in vivo and encapsidated a small amount of mRNA. The monoclonal antibody PA3B2, which recognizes the epitope within region 22 to 36, failed to react with PhCPN2 capsids while it recognized the recombinant and PhCPN1 capsids. Disassembly of the capsids upon treatment with urea showed that PhCPN2 capsids were most stable. These results demonstrate that the N-terminal 26 amino acid residues are not essential for T = 3 capsid assembly in PhMV. In contrast, both the proteins lacking the C-terminal five and ten amino acid residues were present only in the insoluble fraction and could not assemble into capsids, suggesting that these residues are crucial for folding and assembly of the particles.
Resumo:
Using the polymerase chain reaction, the coding sequence for peanut agglutinin (PNA) was cloned and expressed in Escherichia coli. Amplified PNA is identical to previously reported cDNA, suggesting the absence of any introns in PNA gene. Recombinant (re-) PNA forms inclusion bodies in E. coli. Production of PNA was confirmed by probing Western blots with polyclonal anti-PNA immunoglobulin G. Inclusion bodies were solubilized with 6 M guanidine-HCl and renatured by rapid dilution in the presence of metal ions. The renatured lectin was then purified by affinity chromatography. The re-lectin shows carbohydrate-binding properties similar to the natural PNA. This expression system provides a model for future mutagenesis studies of the carbohydrate-binding site and thus facilitates ongoing efforts to explore the molecular basis for the specificity of lectin-carbohydrate interaction.
Resumo:
A sheep liver cDNA clone for the cytosolic serine hydroxymethyltransferase (SHMT) was isolated and its nucleotide sequence determined. The full-length cDNA of SHMT was placed under the control of T7 promoter in pET-3C plasmid and expressed in Escherichia coli. The overexpressed enzyme, present predominantly in the soluble fraction, was catalytically active. The recombinant SHMT was purified to homogeneity with a yield of 10 mg/l bacterial culture. The recombinant enzyme was capable of carrying out tetrahydrofolate-dependent and tetrahydrofolate-independent reactions as effectively as the native enzyme. The K-m values for serine (1 mM) and tetrahydrofolate (0.82 mM) were similar to those of the native enzyme. The recombinant enzyme had a characteristic visible spectrum indicative of the presence of pyridoxal 5'-phosphate as an internal aldimine. The apoenzyme obtained upon removal of the cofactor was inactive and could be reconstituted by the addition of pyridoxal 5'-phosphate demonstrating that the recombinant SHMT was functionally very similar to the native SHMT. This overexpression of eukaryotic tetrameric SHMT in E. coli and the purification and characterization of the recombinant enzyme should thus allow studies on the role of specific amino acids and domains in the activity of the enzyme.
Resumo:
Mycobacterium tuberculosis, the causative agent of tuberculosis, is at increased risk of accumulating damaged guanine nucleotides such as 8-oxo-dGTP and 8-oxo-GTP because of its residency in the oxidative environment of the host macrophages. By hydrolyzing the oxidized guanine nucleotides before their incorporation into nucleic acids, MutT proteins play a critical role in allowing organisms to avoid their deleterious effects. Mycobacteria possess several MutT proteins. Here, we purified recombinant M. tuberculosis MutT2 (MtuMutT2) and M. smegmatis MutT2 (MsmMutT2) proteins from M. tuberculosis (a slow grower) and M. smegmatis (fast growing model mycobacteria), respectively, for their biochemical characterization. Distinct from the Escherichia coli MutT, which hydrolyzes 8-oxo-dGTP and 8-oxo-GTP, the mycobacterial proteins hydrolyze not only 8-oxo-dGTP and 8-oxo-GTP but also dCTP and 5-methyl-dCTP. Determination of kinetic parameters (K-m and V-max) revealed that while MtuMutT2 hydrolyzes dCTP nearly four times better than it does 8-oxo-dGTP, MsmMutT2 hydrolyzes them nearly equally. Also, MsmMutT2 is about 14 times more efficient than MtuMutT2 in its catalytic activity of hydrolyzing 8-oxo-dGTP. Consistent with these observations, MsmMutT2 but not MtuMutT2 rescues E. coli for MutT deficiency by decreasing both the mutation frequency and A-to-C mutations (a hallmark of MutT deficiency). We discuss these findings in the context of the physiological significance of MutT proteins.
Resumo:
The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.
Resumo:
Ribosomal RNA (rRNA) contains a number of modified nucleosides in functionally important regions including the intersubunit bridge regions. As the activity of ribosome recycling factor (RRF) in separating the large and the small subunits of the ribosome involves disruption of intersubunit bridges, we investigated the impact of rRNA methylations on ribosome recycling. We show that deficiency of rRNA methylations, especially at positions 1518 and 1519 of 16S rRNA near the interface with the 50S subunit and in the vicinity of the IF3 binding site, adversely affects the efficiency of RRF-mediated ribosome recycling. In addition, we show that a compromise in the RRF activity affords increased initiation with a mutant tRNA(fMet) wherein the three consecutive G-C base pairs ((29)GGG(31):39CCC41), a highly conserved feature of the initiator tRNAs, were mutated to those found in the elongator tRNA(Met) ((29)UCA(31):(39)psi GA(41)). This observation has allowed us to uncover a new role of RRF as a factor that contributes to fidelity of initiator tRNA selection on the ribosome. We discuss these and earlier findings to propose that RRF plays a crucial role during all the steps of protein synthesis.
Resumo:
The role of interaction between Asn259 (catalytic domain) with Gln821 (C-terminal domain) in PeptidaseN was investigated. The k(cat) of PeptidaseN containing Asn259Asp or Gln821Glu is enhanced whereas it is suppressed in Asn259AspGln821Glu. Structural analysis shows this interaction to change the relative disposition of active site residues, which modulates catalytic activity.
Resumo:
tRNA isolated from escherichia-coli grown in a medium containing [75Se] sodium selenosulfate was converted to nucleosides and analysed for selenonucleosides on a phosphocellulose column. Upon chromatography of the nucleosides on phosphocellulose column, the radioactivity resolved into three peaks. The first peak consisted of free selenium and traces of undigested nucleotides. The second peak was identified as 4-selenouridine by co-chromatographing with an authentic sample of 4-selenouridine. The identity of the third peak was not established. The second and third peaks represented 93% and 7% of the selenium present in nucleosides respectively.
Resumo:
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.
Resumo:
35S-Labeled thionucleosides prepared from Escherichia coli and Pseudomonas aeruginosa tRNAs were chromatographed separately on a phosphocellulose column with a linear salt gradient of 0.005–0.1 M ammonium formate (pH 3.9). The thionucleosides of E. coli tRNA were quantitatively separated into four peaks which were identified using authentic samples as 4-thiouridine (78 %), 2-methylthio-N6-isopentenyladenosine (8 %), 2-thiocytidine (2.5 %) and 5-methylaminomethyl-2-thiouridine (11.5 %). In the case of P. aeruginosa tRNA four radioactive thionucleoside peaks were also observed. One major difference was the almost complete absence of 2-methylthio-N6-isopentenyladenosine and the presence of a new peak of radioactivity in the nucleosides of P. aeruginosa. The relative proportions of the various thionucleosides were found to be different in E. coli and P. aeruginosa tRNAs.
Resumo:
Obtaining pure mRNA preparations from prokaryotes has been difficult, if not impossible, for want of a poly(A) tail on these messages, We have used poly(A) polymerase from yeast to effect specific polyadenylation of Escherichia coli polysomal mRNA in the presence of magnesium and manganese, The polyadenylated total mRNA, which could be subsequently purified by binding to and elution from oligo(dT) beads, had a size range of 0.4-4.0 kb. We have used hybridization to a specific plasmid-encoded gene to further confirm that the polyadenylated species represented mRNA, Withdrawal of Mg2+ from the polyadenylation reaction rRNA despite the presence of Mn2+, indicating the vital role of Mg2+ in maintaining the native structure of polysomes, Complete dissociation of polysomes into ribosomal subunits resulted in quantitative polyadenylation of both 16S and 23S rRNA species, Chromosomal lacZ gene-derived messages were quantitatively recovered in the oligo(dT)-bound fraction, as demonstrated by RT-PCR analysis, Potential advantages that accrue from the availability of pure total mRNA from prokaryotes is discussed.
Resumo:
Sequence specific interaction between DNA and protein molecules has been a subject of active investigation for decades now. Here, we have chosen single promoter containing bacteriophage Delta D-III T7 DNA and Escherichia coli RNA polymerase and followed their recognition at the air-water interface by using the surface plasmon resonance (SPR) technique, where the movement of one of the reacting species is restricted by way of arraying them on an immobilized support. For the Langmuir monolayer studies, we used a RNA polymerase with a histidine tag attached to one of its subunits, thus making it an xcellent substrate for Ni(II) ions, while the SPR Studies were done using biotin-labeled DNA immobilized on a streptavidin-coated chip. Detailed analysis of the thermodynamic parameters as a function of concentration and temperature revealed that the interaction of RNA polymerase with T7 DNA is largely entropy driven (83 (+/- 12) kcal mol(-1)) with a positive enthalpy of 13.6 (+/- 3.6) kcal mol(-1), The free energy of reaction determined by SPR and Langmuir-Blodgett technique was -11 (+/- 2) and -15.6 kcal mol(-1), respectively. The ability of these methods to retain the specificity of the recognition process was also established.