112 resultados para rare earth oxides
em Indian Institute of Science - Bangalore - Índia
On the evaluation of stability of rare earth oxides as face coats for investment casting of titanium
Resumo:
Attempts have been made to evaluate the thermal stability of rare earth oxide face coats against liquid titanium. Determination of microhardness profiles and concentration profiles of oxygen and metallic constituents of oxide in investment cast titanium rods has allowed grActation of relative stability of rare earth oxides. The relative stability of evaluated oxides in the order of increasing stability follows the sequence CeO2 — ZrO2 — Gd2O3 — didymium oxide — Sm2O3 —Nd2O3 — Y2O3. The grading does not follow the free energy data of the formation of these oxides. A better correlation with the experimental observations is obtained when the solubility of the metallic species in titanium is also taken into consideration.
Resumo:
Arsenic pollution of water is a major problem faced worldwide. Arsenic is a suspected carcinogen in human beings and is harmful to other living beings. In the present study, a novel adsorbent was used to remove arsenate [As(V)] from synthetic solutions. The adsorbent, which is a mixture of rare earth oxides, was found to adsorb As(V) rapidly and effectively. The effect of various parameters such as contact time, initial concentration, pH, and adsorbent dose on adsorption efficiency was investigated. More than 90% of the adsorption occurred within the first 10 min and the kinetic rate constant was found to be about 3.5 mg min(-1). Adsorption efficiency was found to be dependent on the initial As(V) concentration, and the adsorption behavior followed the Langmuir adsorption model. The optimum pH was found to be 6.5. The presence of other ions such as nitrate, phosphate, sulphate, and silicate decreased the adsorption of As(V) by about 20-30%. The adsorbed As(V) could be desorbed easily by washing the adsorbent with pH 12 solution. This study demonstrates the applicability of naturally occurring rare earth oxides as selective adsorbents for As(V) from solutions.
Resumo:
The standard Gibbs energy change accompanying the conversion of rare earth oxides to oxysulfides by reaction of rare earth oxides with diatomic sulfur gas has been measured in the temperature range 870 to 1300 K using the solid state cell: Pt/Cu+Cu2S/R2O2S+R2O3‖(CaO)ZrO2‖Ni+NiO, Pt where R=La, Nd, Sm, Gd, Tb, and Dy. The partial pressure of diatomic sulfur over a mixture of rare earth oxide (R2O3) and oxysulfide (R2O2S) is fixed by the dissociation of Cu2S to Cu in a closed system. The buffer mixture of Cu+Cu2S is physically separated from the rare earth oxide and oxysulfide to avoid complications arising from interaction between them. The corresponding equilibrium oxygen partial pressure is measured with an oxide solid electrolyte cell. Gibbs energy change for the conversion of oxide to the corresponding oxysulfide increases monotonically with atomic number of the rare earth element. Second law enthalpy of formation also shows a similar trend. Based on this empirical trend Gibbs energies of formation of oxysulfides of Pr, Eu, Ho, and Er are estimated as a function of temperature.
Resumo:
Oxides of the formula La3LnBaCu5O13+δ (Ln = Nd, Sm, Gd, Dy, or Y) exhibiting metallic resistivity have been prepared and characterized. In the case of yttrium, a composition close to La2Y2BaCu5O13+δ, which is also metallic, could be prepared.
Resumo:
High temperature reaction calorimetry using molten lead berate as solvent has been used to study the thermochemistry of NdMnO3, YMnO3, La1-xSrxMnO3 (with 0 < x < 0.5), and Ln(0.5)Ca(0.5)MnO(3) (with Ln = La, Nd, Y), The enthalpies of formation of these multicomponent oxides from their binary constituents have been calculated from the measured enthalpy of drop solution, The energetic stability of the perovskite depends on the size of the A cation, The enthalpy of formation of YMnO3 (smallest A cation) is more endothermic than those of NdMnO3 and LaMnO3. The energetics of the perovskite also depends on the oxidation state of the B site's ions. In the La1-xSrxMnO3 system, the energetic stability of the structure increases with the Mn4+/Mn3+ ratio, The new values of the enthalpies of oxidations, with reliable standard entropies, were used to plot the phase stability diagram of the lanthanum-manganese-oxygen system in the temperature range 300-1100 K, The LaMnO3/MnO phase boundary evaluated in this study agrees with the one published by Atsumi et nl. calculated from thermogravimetric and conductivity measurements.
Resumo:
We have investigated the structure, magnetic and dielectric properties of the double perovskite oxides, R2NiMnO6 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y). We could refine powder X-ray diffraction patterns of all the phases on the basis of monoclinic (P2(1)/n) double perovskite structure where Ni and Mn atoms are ordered at 2c and 2d sites, respectively. All the phases are ferromagnetic insulators exhibiting relatively low dielectric loss and dielectric constants in the range 15-25. The ferromagnetic ordering temperature of the R2NiMnO6 series seems to correlate better with the radius of R3+ atoms than with the average Ni-O-Mn angle (phi) in the double perovskite structure. These results are consistent with all samples having Mn4+ and Ni2+ With minimal antisite disorder.
Resumo:
An attempt has been made at synthesis and in resolving some of the uncertainties related to the assignments of charge-transfer satellites in the X-ray photoelectron spectra of transition-metal and rare-earth compounds. New satellites are reported in the ligand core-hole spectra as well as in the metal core-level spectra of oxides of second- and third-row transition metals including rare earths. Satellites in the ligand levels and the metal levels tend to be mutually exclusive, a behaviour that can be understood on the basis of metal-ligand overlap. Systematics in the intensities and energy separations of satellites in the first-row transition-metal compounds have been examined in order to gain an insight into the nature of these satellites. A simple model involving the sudden approximation has been employed to explain the observed systematics in intensities of satellites appearing next to metal and ligand core levels on the basis of metal-ligand overlap.
Resumo:
Scheelite-related -Ln2Mo3O12(Ln = La, Pr, Nd, Sm, Gd, Tb, or Dy) oxides are reduced by hydrogen at 780–870 K yielding molybdenum (IV) oxides of formula Ln2Mo3O9. The latter crystallize in a tetragonal scheelite (ABO4) type structure where one third of the A sites and a quarter of the anion sites are vacant: Ln2/3(cat)1/3MoO3(an). The reaction Ln2Mo3O12+ 3H2 Ln2Mo3O9(an)3+ 3H2O may be regarded as topochemically controlled, since both the parent and the product phases have scheelite-related structures. Infrared spectra and electrical and magnetic properties of these metastable defect scheelite phases are reported.
Resumo:
THE COMPLEXES of pyridine-l-oxide and 2- and 4-substituted pyridine-l-oxides have been investigated previously[l]. The complexes of 3-substituted pyfidine-l-oxides, however, have received little attention. The rare-earth complexes of pyridine-Ioxide[l, 2], 4-methylpyridine- l-oxide [1] and 2,6- dimethylpyfidine-l-oxide[3,4] have been reported earlier. The present paper deals with the isolation and characterisation of 3-methylpyridine-l-oxide (3-Picoline-N-oxide, 3-PicNO) complexes with rare-earth perchlorates.
Resumo:
Electronic transport in the high temperature paramagnetic regime of the colossal magnetoresistive oxides, La(1-x)A(x)MnO(3), A=Ca, Sr, Ba, x similar or equal to 0.1-0.3, has been investigated using resistivity measurements. The main motivation for this work is to relook into the actual magnitude of the activation energy for transport in a number of manganites and study its variation as a function of hole doping (x), average A-site cation radius (< r(A)>), cationic disorder (sigma(2)) and strain (epsilon(zz)). We show that contrary to current practice, the description of a single activation energy in this phase is not entirely accurate. Our results clearly reveal a strong dependence of the activation energy on the hole doping as well as disorder. Comparing the results across different substituent species with different < r(A)> reveals the importance of sigma(2) as a metric to qualify any analysis based on (r(A)). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fine-particle rare-earth-metal zirconates, Ln2Zr2O7, where Ln = La, Ce, Pr, Nd, Sm, Gd and Dy having the pyrochlore structure have been prepared using a novel combustion process. The process employs aqueous solutions of the corresponding rare-earth-metal nitrate, zirconium nitrate and carbohydrazide/urea in the required molar ratio. When the solution is rapidly heated to 350–500 °C it boils, foams and burns autocatalytically to yield voluminous oxides. The formation of single-phase Ln2Zr2O7 has been confirmed by powder X-ray diffraction, infrared and fluorescence spectroscopy. The solid combustion products are fine, having surface areas in the range 6–20 m2 g–1. The cold-pressed Pr2Zr2O7 compact when sintered at 1500 °C, 4 h in air, achieved 99% theoretical density.
Resumo:
Oxygen reactivity and catalytic activity of the cobalt-containing layered defect perovskites, YBa2Cu2CoO7+delta and LaBa2Cu2CoO7+delta, in comparison with LaBa2Cu3O7-delta have been investigated employing temperature-programmed desorption (TPD) and temperature-programmed surface reactions (TPSR) in the stoichiometric and catalytic mode using carbon monoxide as a probe molecule. TPD studies showed evidence for the presence of two distinct labile oxygen species, one at (0 0 1/2) sites and the other at (0 1/2 0) sites in LaBa2Cu2CoO7+delta against a single labile species at (0 1/2 0) in the case of two other oxides. The activation energies for the catalytic oxidation of carbon monoxide by oxygen over LaBa2Cu3O7-delta, YBa2Cu2CoO7+delta, and LaBa2Cu2CoO7+delta have been estimated to be 24.2, 15.9, and 13.6 kcal/mol, respectively. The reactivity and catalytic activity of the oxide systems have been interpreted in terms of the structural changes brought about by substituents, guided by a directing effect of the larger rare earth cation. TPSR profiles, structural analysis, and infrared spectroscopic investigations suggest that the oxygen present at (0 0 1/2) sites in the case of LaBa2Cu2CoO7+delta is accessible to catalytic oxidation of CO through a Mars-Van Krevelen pathway. Catalytic conversion of CO to CO2 over LaBa2Cu2CoO7+delta occurs at 200 degrees C. The enhanced reactivity is explained in terms of changes brought about in the coordination polyhedra around transition metals, enhanced basal plane oxygen diffusivity, and redox potentials of the different transition metal cations.
Resumo:
Surface oxidation of La, Ce, Sm and Tb metals has been investigated by He(II) ultraviolet photoelectron spectroscopy (u.p.s.) and X-ray photoelectron spectroscopy (X.p.s.). Oxidation of La gives rise to La2O3 on the surface. While Ce2O3 appears to be the stable oxide on the surface, we find evidence for formation of CeO2 at high oxygen exposure. Valence band of Sm clearly shows the presence of both divalent and trivalent states due to interconfigurational fluctuation. Exposure of Sm to oxygen first depletes the divalent Sm at the surface. While Sm2O3 is the stable oxide on the surface of Sm, Tb2O3 is the stable oxide on the surface of Tb (and not any of the higher oxides).
Resumo:
Giant magnetoresistance (GMR), which was until recently confined to magnetic layered and granular materials, as well as doped magnetic semiconductors, occurs in manganate perovskites of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth; A = divalent ion). These manganates are ferromagnetic at or above a certain value of x (or Mn4+ content) and become metallic at temperatures below the curie temperature, T-c. GMR is generally a maximum close to T-c or the insulator-metal (I-M) transition temperature, T-im. The T-c and %MR are markedly affected by the size of the A site cation, [r(A)], thereby affording a useful electronic phase diagram when T-c or T-im is plotted against [r(A)]. We discuss GMR and related properties of manganates in polycrystalline, thin-film, and single-crystal forms and point out certain commonalities and correlations. We also examine some unusual features in the electron-transport properties of manganates, in particular charge-ordering effects. Charge ordering is crucially dependent on [r(A)] or the e(g) band width, and the charge-ordered insulating state transforms to a metallic ferromagnetic state on the application of a magnetic field.
Phase transitions and rare-earth magnetism in hexagonal and orthorhombic $DyMnO_{3}$ single crystals
Resumo:
The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.