10 resultados para quotient intellectuel
em Indian Institute of Science - Bangalore - Índia
Resumo:
We prove a sub-convex estimate for the sup-norm of L-2-normalized holomorphic modular forms of weight k on the upper half plane, with respect to the unit group of a quaternion division algebra over Q. More precisely we show that when the L-2 norm of an eigenfunction f is one, parallel to f parallel to(infinity) <<(epsilon) k(1/2-1/33+epsilon) for any epsilon > 0 and for all k sufficiently large.
Resumo:
A divide-and-correct algorithm is described for multiple-precision division in the negative base number system. In this algorithm an initial quotient estimate is obtained from suitable segmented operands; this is then corrected by simple rules to arrive at the true quotient.
Resumo:
A divide-and-correct algorithm is described for multiple-precision division in the negative base number system. In this algorithm an initial quotient estimate is obtained from suitable segmented operands; this is then corrected by simple rules to arrive at the true quotient.
Resumo:
Described here is a deterministic division algorithm in a negative-base number system; here, the divisor is mapped into a suitable range by premultiplication, so that the choice of the quotient digit is deterministic.
Resumo:
Urban lakes form vital ecosystems supporting livelihood with social, economic and aesthetic benefits that are essential for quality life. This depends on the biotic and abiotic components in an ecosystem. The structure of an ecosystem forms a decisive factor in sustaining its functional abilities which include nutrient cycling, oxygen production, etc. A community assemblage of primary producers (algae) plays a crucial role in maintaining the balance as they form the base of energy pyramid in the ecosystem. Algae assimilate carbon in the environment via photosynthetic activities and releases oxygen for the next level of biotic elements in an ecosystem. Besides these, algal cells rich in protein serve as food and feed, used as manure and for production of biofuels. Understanding algal photosynthetic dynamics helps in assessing the level of dissolved oxygen (DO), food (fish, etc.), waste assimilation, etc. Algal chlorophyll content, algal biomass, primary productivity and algal photosynthetic quotient are some of the parameters that help in assessing the status of urban lakes. Chlorophyll content gives a measure of the growth, spread and quantity of algae. Unplanned rapid urbanization in Bangalore in recent times has resulted in either disappearance of lake ecosystems or deteriorated the lake water quality impairing the ecological processes. This paper computes algal growth, community structure, primary productivity and composition for three major lakes (T G Halli, Bellandur and Varthur lakes) under contrast levels of anthropogenic influences.
Resumo:
Using the fact the BTZ black hole is a quotient of AdS(3) we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. We show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop. The Landau-Lifshitz equations from the spin chain can also be identified with the sigma model equations of motion.
Resumo:
The symmetric group acts on the Cartesian product (S (2)) (d) by coordinate permutation, and the quotient space is homeomorphic to the complex projective space a'',P (d) . We used the case d=2 of this fact to construct a 10-vertex triangulation of a'',P (2) earlier. In this paper, we have constructed a 124-vertex simplicial subdivision of the 64-vertex standard cellulation of (S (2))(3), such that the -action on this cellulation naturally extends to an action on . Further, the -action on is ``good'', so that the quotient simplicial complex is a 30-vertex triangulation of a'',P (3). In other words, we have constructed a simplicial realization of the branched covering (S (2))(3)-> a'',P (3).
Resumo:
Diffeomorphisms preserve spacetime singularities, whereas higher spin symmetries need not. Since three-dimensional de Sitter space has quotients that have big-bang/big-crunch singularities and since dS(3)-gravity can be written as an SL(2, C) Chern-Simons theory, we investigate SL(3, C) Chern-Simons theory as a higher-spin context in which these singularities might get resolved. As in the case of higher spin black holes in AdS(3), the solutions are invariantly characterized by their holonomies. We show that the dS(3) quotient singularity can be desingularized by an SL(3, C) gauge transformation that preserves the holonomy: this is a higher spin resolution the cosmological singularity. Our work deals exclusively with the bulk theory, and is independent of the subtleties involved in defining a CFT2 dual to dS(3) in the sense of dS/CFT.
Resumo:
Resolution of cosmological singularities is an important problem in any full theory of quantum gravity. The Milne orbifold is a cosmology with a big-bang/big-crunch singularity, but being a quotient of flat space it holds potential for resolution in string theory. It is known, however, that some perturbative string amplitudes diverge in the Milne geometry. Here we show that flat space higher spin theories can effect a simple resolution of the Milne singularity when one embeds the latter in 2 + 1 dimensions. We explain how to reconcile this with the expectation that non-perturbative string effects are required for resolving Milne. Along the way, we introduce a Grassmann realization of the inonfi-Wigner contraction to export much of the AdS technology to -our flat space computation. (C) 2014 The Authors. Published by Elsevier BAT.
Resumo:
We introduce a family of domains-which we call the -quotients-associated with an aspect of -synthesis. We show that the natural association that the symmetrized polydisc has with the corresponding spectral unit ball is also exhibited by the -quotient and its associated unit `` -ball''. Here, is the structured singular value for the case Specifically: we show that, for such an E, the Nevanlinna-Pick interpolation problem with matricial data in a unit `` -ball'', and in general position in a precise sense, is equivalent to a Nevanlinna-Pick interpolation problem for the associated -quotient. Along the way, we present some characterizations for the -quotients.