104 resultados para quantum chemical calculations

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possible nonplanar distortions of the amide group in formamide, acetamide, N-methylacetamide, and N-ethylacetamide have been examined using CNDO/2 and INDO methods. The predictions from these methods are compared with the results obtained from X-ray and neutron diffraction studies on crystals of small open peptides, cyclic peptides, and amides. It is shown that the INDO results are in good agreement with observations, and that the dihedral angles N and defining the nonplanarity of the amide unit are correlated approximately by the relation N = -2, while C is small and uncorrelated with . The present study indicates that the nonplanar distortions at the nitrogen atom of the peptide unit may have to be taken into consideration, in addition to the variation in the dihedral angles (,), in working out polypeptide and protein structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several mechanisms have been proposed to explain the action of enzymes at the atomic level. Among them, the recent proposals involving short hydrogen bonds as a step in catalysis by Gerlt and Gassman [1] and proton transfer through low barrier hydrogen bonds (LBHBs) [2, 3] have attracted attention. There are several limitations to experimentally testing such hypotheses, Recent developments in computational methods facilitate the study of active site-ligand complexes to high levels of accuracy, Our previous studies, which involved the docking of the dinucleotide substrate UpA to the active site of RNase A [4, 5], enabled us to obtain a realistic model of the ligand-bound active site of RNase A. From these studies, based on empirical potential functions, we were able to obtain the molecular dynamics averaged coordinates of RNase A, bound to the ligand UpA. A quantum mechanical study is required to investigate the catalytic process which involves the cleavage and formation of covalent bonds. In the present study, we have investigated the strengths of some of the hydrogen bonds between the active site residues of RNase A and UpA at the ab initio quantum chemical level using the molecular dynamics averaged coordinates as the starting point. The 49 atom system and other model systems were optimized at the 3-21G level and the energies of the optimized systems were obtained at the 6-31G* level. The results clearly indicate the strengthening of hydrogen bonds between neutral residues due to the presence of charged species at appropriate positions. Such a strengthening manifests itself in the form of short hydrogen bonds and a low barrier for proton transfer. In the present study, the proton transfer between the 2'-OH of ribose (from the substrate) and the imidazole group from the H12 of RNase A is influenced by K41, which plays a crucial role in strengthening the neutral hydrogen bond, reducing the barrier for proton transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two hydroxycinnamic acids viz., p-coumaric, and caffeic acids have been extracted and purified from Parthenium hysterophorus, subsequently characterized by elemental analysis, FT-IR, NMR, single crystal X-ray crystallography. The optimized structures of these acids were calculated in terms of density functional theory by Gaussian 09. The validation of experimental and theoretically obtained data for structural parameters such as bond lengths and bond angles has have been carried out to analyze the statistical significance by curve fitting analysis and the values of correlation coefficient found to be 0.985, 0.992, and 0.984, 0.975 in p-coumaric, and caffeic acids, respectively. The calculated HOMO and LUMO energies show the eventual charge transfer interaction within the molecule. Thermal studies were also carried out by thermogravimetry (TG), differential thermogravimetric analysis (DTA), and derivative thermogravimetry (DTG). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibition effect of colchicine (CC) on mild steel (MS) corrosion in 1 M HCl solution has been investigated by electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometry and also by the gravimetric method. Polarization studies showed that CC acts as mixed type corrosion inhibitor. The inhibitor adsorption process in the MS/CC/HCl system was studied at different temperatures (303-333 K). The adsorption of CC on MS surface is an exothermic process and obeys the Langmuir adsorption isotherm. Based on potential of zero charge values and quantum chemical parameters, the mechanism of adsorption has been proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of different donor nitrogen atoms on the strength and nature of intramolecular Se center dot center dot center dot N interactions is evaluated for organoselenium compounds having N,N-dimethylaminomethyl (dime), oxazoline (oxa) and pyridyl (py) substituents. Quantum chemical calculations on three series of compounds [2-(dime)C6H4SeX (1a-g), 2-(oxa)C6H4SeX (2a-g), 2- (py)C6H4SeX (3-ag); X=Cl, Br, OH, CN, SPh, SePh, CH3] at the B3LYP/6-31G(d) level show that the stability of different conformers depends on the strength of intramolecular nonbonded Se center dot center dot center dot N interactions. Natural bond orbital (NBO), NBO deletion and atoms in molecules (AIM) analyses suggest that the nature of the Se center dot center dot center dot N interaction is predominantly covalent and involves nN ->sigma*(Se-X) orbital interaction. In the three series of compounds, the strength of the Se center dot center dot center dot N interaction decreases in the order 3>2>1 for a particular X, and it decreases in the order Cl > Br > OH>SPh approximate to CN approximate to SePh>CH3 for all the three series 1-3. However, further analyses suggest that the differences in strength of Se center dot center dot center dot N interaction in 1-3 is predominantly determined by the distance between the Se and N atoms, which in turn is an outcome of specific structures of 1, 2 and 3, and the nature of the donor nitrogen atoms involved has very little effect on the strength of Se center dot center dot center dot N interaction. It is also observed that Se center dot center dot center dot N interaction becomes stronger in polar solvents such as CHCl3, as indicated by the shorter r(Se center dot center dot center dot N) and higher E-Se center dot center dot center dot N values in CHCl3 compared to those observed in the gas phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1,2-Enedioic systems, being sterically perturbed from planarity do not show the effect of the extended conjugation expected of a (formal) trienic entity. In the absence of a model which approximates to a uniplanar situation, the strategy of replacing an ester group in the enedioates by a cyano (for which less stringent steric demand may be presumed) and noting the correction concomitant to this replacement was adopted to arrive at a notional figure for the position of maximal absorption in the planar enedioates. From this the conclusion, subject to substantiation by molecular mechanical or quantum chemical calculations, was drawn that even the E-isomeric and comparatively less substituted enedioates are highly sterically perturbed. An alternative to an earlier explanation of the bathochromic shift of absorption maxima encountered in the 5-cyclic ene-ester and ene-nitrile, relative to the 6-cyclic analogues (observed also with the enedioates and cyanovinyl ester systems), seen later to have been based on unwarranted premises, has been advanced. A comment on the absorption characteristics of enedioic anhydrides has been appended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrophosphate prototypes such as methyl triphosphate and methyl diphosphate molecules in their different protonation states have been investigated at high levels of quantum chemical calculations. The optimized geometries, the thermochemistry of the hydrolysis and the molecular orbitals contributing to the high energy of these compounds have been analyzed. These investigations provide insights into the "high energy" character of ATP molecule. Further, the dependence of vibrational frequencies on the number of phosphate groups and the charged states has also been presented. These results can aid the interpretation of spectra obtained by experiments on complexes containing pyrophosphate prototypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrophosphate prototypes such as methyl triphosphate and methyl diphosphate molecules in their different protonation states have been investigated at high levels of quantum chemical calculations. The optimized geometries, the thermochemistry of the hydrolysis and the molecular orbitals contributing to the high energy of these compounds have been analyzed. These investigations provide insights into the ``high energy'' character of ATP molecule. Further, the dependence of vibrational frequencies on the number of phosphate groups and the charged states has also been presented. These results can aid the interpretation of spectra obtained by experiments on complexes containing pyrophosphate prototypes. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we report the structure of a 1:1 charge transfer complex between pyridine (PYR) and chloranil (CHL) in solution (CHCl(3)) from the measurement of hyperpolarizability (beta(HRS)) and linear and circular depolarization ratios, D and D', respectively, by the hyper-Rayleigh scattering technique and state-of-the-art quantum chemical calculations. Using linearly (electric field vector along X) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D = I(X,X)(2 omega)/I(X,Z)(2 omega) and D' = I(X,C)(2 omega)/I(Z,C)(2 omega) in the laboratory fixed XYZ frame by detecting the second harmonic (SH) scattered light in a polarization resolved fashion. The stabilization energy and the optical gap calculated through the MP2/cc-pVDZ method using Gaussian09 were not significantly different to distinguish between the cofacial and T-shape structures. Only when the experimentally obtained beta(HRS) and the depolarization ratios, D and D', were matched with the theoretically computed values from single and double configuration interaction (SDCI) calculations performed using the ZINDO-SCRF technique, we concluded that the room temperature equilibrium structure of the complex is cofacial. This is in sharp contrast to an earlier theoretical prediction of the T-shape structure of the complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The layered double hydroxides (LDH) or anionic clays are an important class of ion-exchange materials. They consist of positively charged brucite-like inorganic sheets with charge-compensating exchangeable anions in the interlamellar space. Here we show how neutral TCNQ (7,7,8,8-tetracyanoquinodimethane) molecules can be included within the galleries of an LDH. To do so, we exploit the fact that TCNQ is a good electron acceptor that forms donor acceptor complexes with a variety of donors. The electron donor aniline was intercalated into a Mg-Al LDH as p-aminobenzoate (AB) ions by a conventional ion-exchange reaction. We show here that neutral TCNQ molecules may be driven into the galleries of the layered solid by charge-transfer complex formation with the intercalated p-aminobenzoate anions. We use diffraction and spectroscopic measurements in combination with molecular dynamics simulations and quantum chemical calculations to establish the nature of interactions and arrangement of the charge-transfer complex within the galleries of the layered double hydroxide. Electrostatic interactions between the TCNQ molecules and the anchored AB ions, subsequent to charge transfer, are the driving force for the inclusion of TCNQ molecules in the galleries of the LDH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical functionalization of various hydrocarbons, such as coronene, corannulene, and so forth, shows good promise in electronics applications because of their tunable optoelectronic properties. By using quantum chemical calculations, we have investigated the changes in the corannulene buckybowl structure, which greatly affect its electronic and optical properties when functionalized with different electron-withdrawing imide groups. We find that the chemical nature and position of functional groups strongly regulate the stacking geometry, -stacking interactions, and electronic structure. Herein, a range of optoelectronic properties and structure-property relationships of various imide-functionalized corannulenes are explored and rationalized in detail. In terms of carrier mobility, we find that the functionalization strongly affects the reorganization energy of corannulene, while the enhanced stacking improves hopping integrals, favoring the carrier mobility of crystals of pentafluorophenylcorannulene-5-monoimide. The study shows a host of emerging optoelectronic properties and enhancements in the charge-transport characteristics of functionalized corannulene, which may find possible semiconductor and electronics applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first hyperpolarizability (beta) of a series of half-sandwich Ru complexes with a mercaptobenzothiazole ligand bearing a halogen atom substitution in the para-position has been investigated by hyper-Rayleigh scattering and quantum chemical calculations. The heterocyclic ligand with a bromine atom in the para position makes it a very good donor and charge flows to the Ru center enhancing the beta value of the complex by a factor of 2 compared to the complex with the ligand without the halogen substitution. The resonance (+R) and the inductive (-I) effects exerted by the halogen atom in the para position push electrons in opposing directions in the complex. For the Br and Cl atoms the resonance effect dominates which enables the ligand to donate electrons to the metal center thereby increasing the hyperpolarizability whereas for the fluorine atom, the inductive effect is dominant which reduces the charge flow to the metal and the hyperpolarizability drops even below that of the unsubstituted ligand. This unprecedented halogen atom effect on beta of metal complexes is reported. (C) 2015 Elsevier By. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conformational analysis of nucleic acids and polynucleotides is far more complex than that of proteins and polypeptides, due to five single bond rotations in addition to the sugar puckerings in the monomer. Sundaralingam1 proposed the concept of the 'rigid' nucleotides from analysis of crystal structure data, with the flexibility allowed only about the phosphodiester bonds. However, the crystal structure of deoxyguanosine-5'−phosphate2,3 indicates at gt conformation about the C-4'−C-5' bond against gg in a conformationally rigid nudeotide1. Jack et al. 4 considered the flexibility of nucleotides in tRNA about the C-4'−C-5' bond, thereby introducing the concept of 'non-rigid' ribonucleotides. Conformational flexibility of the f uranose ring in DNA and RNA and their energetics using classical and quantum chemical methods have been reported5−8. We have examined the flexibility of 3'-nucleotides. alpha, the most important of the conformational parameters defining the 3'-end of a nucleotide unit9, has a value in the range 195°−270° in all the 3'-nucleotides, dinucleoside monophosphates and higher oligomers which have been surveyed. A survey of the proposed structures of polyribonudeotides10,11 also shows the values of a to be greater than 200°. However, the structures proposed for B-DNA by Arnott and Hukins12,13 and D-DNA by Arnott et al. 14 have values of alpha of 155° and 141° respectively, much lower than the lowest observed value. The structure for B-DNA has two strong, short contacts (C-2'...OP-1 = 2.64 Å and HC-2"...OP-1 = 1.79 Å) which lead to an energetically unfavourable conformation. Hence, it is of interest to investigate whether, by allowing flexibility to the sugar moiety in the nucleotide unit, it is possible to make the structure energetically favourable. Here, conformational energy calculations were carried out to determine the range of alpha which would give rise to energetically favoured conformations with different sugar puckerings. Our analysis has shown that the theoretically obtained range is nearly the same as the preferred range in crystals, indicating the flexibility of the 3'-nucleotides.