219 resultados para quadratic assignment problem

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time minimising assignment problem is the problem of finding an assignment of n jobs to n facilities, one to each, which minimises the total time for completing all the jobs. The usual assumption made in these problems is that all the jobs are commenced simultaneously. In this paper two generalisations of this assumption are considered, and algorithms are presented to solve these general problems. Numerical examples are worked out illustrating the algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network approach for solving the two-dimensional assignment problem is proposed. The design of the neural network is discussed and simulation results are presented. The neural network obtains 10-15% lower cost placements on the examples considered, than the adjacent pairwise exchange method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the key problems in the design of any incompletely connected multiprocessor system is to appropriately assign the set of tasks in a program to the Processing Elements (PEs) in the system. The task assignment problem has proven difficult both in theory and in practice. This paper presents a simple and efficient heuristic algorithm for assigning program tasks with precedence and communication constraints to the PEs in a Message-based Multiple-bus Multiprocessor System, M3, so that the total execution time for the program is minimized. The algorithm uses a cost function: “Minimum Distance and Parallel Transfer” to minimize the completion time. The effectiveness of the algorithm has been demonstrated by comparing the results with (i) the lower bound on the execution time of a program (task) graph and (ii) a random assignment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Channel assignment in multi-channel multi-radio wireless networks poses a significant challenge due to scarcity of number of channels available in the wireless spectrum. Further, additional care has to be taken to consider the interference characteristics of the nodes in the network especially when nodes are in different collision domains. This work views the problem of channel assignment in multi-channel multi-radio networks with multiple collision domains as a non-cooperative game where the objective of the players is to maximize their individual utility by minimizing its interference. Necessary and sufficient conditions are derived for the channel assignment to be a Nash Equilibrium (NE) and efficiency of the NE is analyzed by deriving the lower bound of the price of anarchy of this game. A new fairness measure in multiple collision domain context is proposed and necessary and sufficient conditions for NE outcomes to be fair are derived. The equilibrium conditions are then applied to solve the channel assignment problem by proposing three algorithms, based on perfect/imperfect information, which rely on explicit communication between the players for arriving at an NE. A no-regret learning algorithm known as Freund and Schapire Informed algorithm, which has an additional advantage of low overhead in terms of information exchange, is proposed and its convergence to the stabilizing outcomes is studied. New performance metrics are proposed and extensive simulations are done using Matlab to obtain a thorough understanding of the performance of these algorithms on various topologies with respect to these metrics. It was observed that the algorithms proposed were able to achieve good convergence to NE resulting in efficient channel assignment strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are p heterogeneous objects to be assigned to n competing agents (n > p) each with unit demand. It is required to design a Groves mechanism for this assignment problem satisfying weak budget balance, individual rationality, and minimizing the budget imbalance. This calls for designing an appropriate rebate function. When the objects are identical, this problem has been solved which we refer as WCO mechanism. We measure the performance of such mechanisms by the redistribution index. We first prove an impossibility theorem which rules out linear rebate functions with non-zero redistribution index in heterogeneous object assignment. Motivated by this theorem,we explore two approaches to get around this impossibility. In the first approach, we show that linear rebate functions with non-zero redistribution index are possible when the valuations for the objects have a certain type of relationship and we design a mechanism with linear rebate function that is worst case optimal. In the second approach, we show that rebate functions with non-zero efficiency are possible if linearity is relaxed. We extend the rebate functions of the WCO mechanism to heterogeneous objects assignment and conjecture them to be worst case optimal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose an eigenvalue based technique to solve the Homogeneous Quadratic Constrained Quadratic Programming problem (HQCQP) with at most three constraints which arise in many signal processing problems. Semi-Definite Relaxation (SDR) is the only known approach and is computationally intensive. We study the performance of the proposed fast eigen approach through simulations in the context of MIMO relays and show that the solution converges to the solution obtained using the SDR approach with significant reduction in complexity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper recasts the multiple data path assignment problem solved by Torng and Wilhelm by the dynamic programming method [1] into a minimal covering problem following a switching theoretic approach. The concept of bus compatibility for the data transfers is used to obtain the various ways of interconnecting the circuit modules with the minimum number of buses that allow concurrent data transfers. These have been called the feasible solutions of the problem. The minimal cost solutions are obtained by assigning weights to the bus-compatible sets present in the feasible solutions. Minimization of the cost of the solution by increasing the number of buses is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper recasts the multiple data path assignment problem solved by Torng and Wilhelm by the dynamic programming method [1] into a minimal covering problem following a switching theoretic approach. The concept of bus compatibility for the data transfers is used to obtain the various ways of interconnecting the circuit modules with the minimum number of buses that allow concurrent data transfers. These have been called the feasible solutions of the problem. The minimal cost solutions are obtained by assigning weights to the bus-compatible sets present in the feasible solutions. Minimization of the cost of the solution by increasing the number of buses is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The controllability grammian is important in many control applications. Given a set of closed-loop eigenvalues the corresponding controllability grammian can be obtained by computing the controller which assigns the eigenvalues and then by solving the Lyapunov equation that defines the grammian. The relationship between the controllability grammian, resulting from state feedback, and the closed-loop eigenvalues of a single input linear time invariant (LTI) system is obtained. The proposed methodology does not require the computation of the controller that assigns the specified eigenvalues. The closed-loop system matrix is obtained from the knowledge of the open-loop system matrix, control influence matrix and the specified closed-loop eigenvalues. Knowing the closed-loop system matrix, the grammian is then obtained from the solution of the Lyapunov equation that defines it. Finally the proposed idea is extended to find the state covariance matrix for a specified set of closed-loop eigenvalues (without computing the controller), due to impulsive input in the disturbance channel and to solve the eigenvalue assignment problem for the single input case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Support Vector Clustering has gained reasonable attention from the researchers in exploratory data analysis due to firm theoretical foundation in statistical learning theory. Hard Partitioning of the data set achieved by support vector clustering may not be acceptable in real world scenarios. Rough Support Vector Clustering is an extension of Support Vector Clustering to attain a soft partitioning of the data set. But the Quadratic Programming Problem involved in Rough Support Vector Clustering makes it computationally expensive to handle large datasets. In this paper, we propose Rough Core Vector Clustering algorithm which is a computationally efficient realization of Rough Support Vector Clustering. Here Rough Support Vector Clustering problem is formulated using an approximate Minimum Enclosing Ball problem and is solved using an approximate Minimum Enclosing Ball finding algorithm. Experiments done with several Large Multi class datasets such as Forest cover type, and other Multi class datasets taken from LIBSVM page shows that the proposed strategy is efficient, finds meaningful soft cluster abstractions which provide a superior generalization performance than the SVM classifier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ranking problems have become increasingly important in machine learning and data mining in recent years, with applications ranging from information retrieval and recommender systems to computational biology and drug discovery. In this paper, we describe a new ranking algorithm that directly maximizes the number of relevant objects retrieved at the absolute top of the list. The algorithm is a support vector style algorithm, but due to the different objective, it no longer leads to a quadratic programming problem. Instead, the dual optimization problem involves l1, ∞ constraints; we solve this dual problem using the recent l1, ∞ projection method of Quattoni et al (2009). Our algorithm can be viewed as an l∞-norm extreme of the lp-norm based algorithm of Rudin (2009) (albeit in a support vector setting rather than a boosting setting); thus we refer to the algorithm as the ‘Infinite Push’. Experiments on real-world data sets confirm the algorithm’s focus on accuracy at the absolute top of the list.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and Wastlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the (2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of cooperative beamforming for maximizing the achievable data rate of an energy constrained two-hop amplify-and-forward (AF) network is considered. Assuming perfect channel state information (CSI) of all the nodes, we evaluate the optimal scaling factor for the relay nodes. Along with individual power constraint on each of the relay nodes, we consider a weighted sum power constraint. The proposed iterative algorithm initially solves a set of relaxed problems with weighted sum power constraint and then updates the solution to accommodate individual constraints. These relaxed problems in turn are solved using a sequence of Quadratic Eigenvalue Problems (QEP). The key contribution of this letter is the generalization of cooperative beamforming to incorporate both the individual and weighted sum constraint. Furthermore, we have proposed a novel algorithm based on Quadratic Eigenvalue Problem (QEP) and discussed its convergence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.