12 resultados para pullback attractors
em Indian Institute of Science - Bangalore - Índia
Resumo:
The ungluing of a strange attractor, gluing of strange attractors, and the coexistence of strange attractors, not reported earlier in the study of the Lorenz system, are discovered numerically.
Resumo:
A new fiber bundle approach to the gauge theory of a group G that involves space‐time symmetries as well as internal symmetries is presented. The ungauged group G is regarded as the group of left translations on a fiber bundle G(G/H,H), where H is a closed subgroup and G/H is space‐time. The Yang–Mills potential is the pullback of the Maurer–Cartan form and the Yang–Mills fields are zero. More general diffeomorphisms on the bundle space are then identified as the appropriate gauged generalizations of the left translations, and the Yang–Mills potential is identified as the pullback of the dual of a certain kind of vielbein on the group manifold. The Yang–Mills fields include a torsion on space‐time.
Resumo:
A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.
Resumo:
We study in great detail a system of three first-order ordinary differential equations describing a homopolar disk dynamo (HDD). This system displays a large variety of behaviors, both regular and chaotic. Existence of periodic solutions is proved for certain ranges of parameters. Stability criteria for periodic solutions are given. The nonintegrability aspects of the HDD system are studied by investigating analytically the singularity structure of the system in the complex domain. Coexisting attractors (including period-doubling sequence) and coexisting strange attractors appear in some parametric regimes. The gluing of strange attractors and the ungluing of a strange attractor are also shown to occur. A period of bifurcation leading to chaos, not observed for other chaotic systems, is shown to characterize the chaotic behavior in some parametric ranges. The limiting case of the Lorenz system is also studied and is related to HDD.
Resumo:
Dynamics of the aircraft configuration considered in this paper show a unique characteristic in that there are no stable attractors in the entire high angle-of-attack flight envelope. As a result, once the aircraft has departed from the normal flight regime, no standard technique can be applied to recover the aircraft. In this paper, using feedback linearization technique, a nonlinear controller is designed at high angles of attack, which is engaged after the aircraft departs from normal flight regime. This controller stabilizes the aircraft into a stable spin. Then a set of synthetic pilot inputs is applied to cause an automatic transition from the spin equilibrium to low angles of attack where the second controller is connected. This controller is a normal gain-scheduled controller designed to have a large domain of attraction at low angles of attack. It traps the aircraft into a low angle-of-attack level flight. This entire concept of recovery has been verified using six-degrees-of-freedom nonlinear simulation. Feedback linearization technique used to design a controller ensures internal stability only if the nonlinear plant has stable zero dynamics. Because zero dynamics depend on the selection of outputs, a new method of choosing outputs is described to obtain a plant that has stable zero dynamics. Certain important aspects pertaining to the implementation of a feedback linearization-based controller are also discussed.
Resumo:
Neural network models of associative memory exhibit a large number of spurious attractors of the network dynamics which are not correlated with any memory state. These spurious attractors, analogous to "glassy" local minima of the energy or free energy of a system of particles, degrade the performance of the network by trapping trajectories starting from states that are not close to one of the memory states. Different methods for reducing the adverse effects of spurious attractors are examined with emphasis on the role of synaptic asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer in decision directed mode (DD-LMS-LE). We study how well this equalizer tracks the optimal Wiener equalizer. Initially we study a fixed channel.For a fixed channel, we obtain the existence of DD attractors near the Wiener filter at high SNRs using an ODE (Ordinary Differential Equation) approximating the DD-LMS-LE. We also show, via examples, that the DD attractors may not be close to the Wiener filters at low SNRs. Next we study a time varying fading channel modeled by an Auto-regressive (AR) process of order 2. The DD-LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs. We show via examples that the LMS equalizer ODE show tracks the ODE corresponding to the instantaneous Wiener filter when the SNR is high. This may not happen at low SNRs.
Resumo:
In this paper we study an LMS-DFE. We use the ODE framework to show that the LMS-DFE attractors are close to the true DFE Wiener filter (designed considering the decision errors) at high SNR. Therefore, via LMS one can obtain a computationally efficient way to obtain the true DFE Wiener filter under high SNR. We also provide examples to show that the DFE filter so obtained can significantly outperform the usual DFE Wiener filter (designed assuming perfect decisions) at all practical SNRs. In fact, the performance improvement is very significant even at high SNRs (up to 50%), where the popular Wiener filter designed with perfect decisions, is believed to be closer to the optimal one.
Resumo:
Clock synchronisation is an important requirement for various applications in wireless sensor networks (WSNs). Most of the existing clock synchronisation protocols for WSNs use some hierarchical structure that introduces an extra overhead due to the dynamic nature of WSNs. Besides, it is difficult to integrate these clock synchronisation protocols with sleep scheduling scheme, which is a major technique to conserve energy. In this paper, we propose a fully distributed peer-to-peer based clock synchronisation protocol, named Distributed Clock Synchronisation Protocol (DCSP), using a novel technique of pullback for complete sensor networks. The pullback technique ensures that synchronisation phases of any pair of clocks always overlap. We have derived an exact expression for a bound on maximum synchronisation error in the DCSP protocol, and simulation study verifies that it is indeed less than the computed upper bound. Experimental study using a few TelosB motes also verifies that the pullback occurs as predicted.
Resumo:
Due to the inherent feedback in a decision feedback equalizer (DFE) the minimum mean square error (MMSE) or Wiener solution is not known exactly. The main difficulty in such analysis is due to the propagation of the decision errors, which occur because of the feedback. Thus in literature, these errors are neglected while designing and/or analyzing the DFEs. Then a closed form expression is obtained for Wiener solution and we refer this as ideal DFE (IDFE). DFE has also been designed using an iterative and computationally efficient alternative called least mean square (LMS) algorithm. However, again due to the feedback involved, the analysis of an LMS-DFE is not known so far. In this paper we theoretically analyze a DFE taking into account the decision errors. We study its performance at steady state. We then study an LMS-DFE and show the proximity of LMS-DFE attractors to that of the optimal DFE Wiener filter (obtained after considering the decision errors) at high signal to noise ratios (SNR). Further, via simulations we demonstrate that, even at moderate SNRs, an LMS-DFE is close to the MSE optimal DFE. Finally, we compare the LMS DFE attractors with IDFE via simulations. We show that an LMS equalizer outperforms the IDFE. In fact, the performance improvement is very significant even at high SNRs (up to 33%), where an IDFE is believed to be closer to the optimal one. Towards the end, we briefly discuss the tracking properties of the LMS-DFE.
Resumo:
We consider extremal limits of the recently constructed ``subtracted geometry''. We show that extremality makes the horizon attractive against scalar perturbations, but radial evolution of such perturbations changes the asymptotics: from a conical-box to flat Minkowski. Thus these are black holes that retain their near-horizon geometry under perturbations that drastically change their asymptotics. We also show that this extremal subtracted solution (''subttractor'') can arise as a boundary of the basin of attraction for flat space attractors. We demonstrate this by using a fairly minimal action (that has connections with STU model) where the equations of motion are integrable and we are able to find analytic solutions that capture the flow from the horizon to the asymptotic region. The subttractor is a boundary between two qualitatively different flows. We expect that these results have generalizations for other theories with charged dilatonic black holes.