1 resultado para problem based learning (PBL), distance education, online learning
em Indian Institute of Science - Bangalore - Índia
Filtro por publicador
- JISC Information Environment Repository (3)
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (4)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (29)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (2)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (20)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (14)
- Digital Peer Publishing (12)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (3)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (4)
- Línguas & Letras - Unoeste (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (11)
- National Center for Biotechnology Information - NCBI (2)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Open University Netherlands (3)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (35)
- Queensland University of Technology - ePrints Archive (164)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositorio de la Universidad de Cuenca (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (31)
- Repositorio Institucional UNISALLE - Colombia (2)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Scielo España (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (23)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (31)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal (1)
- Université de Montréal, Canada (8)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (3)
- University of Queensland eSpace - Australia (25)
- University of Southampton, United Kingdom (5)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
Large variations in human actions lead to major challenges in computer vision research. Several algorithms are designed to solve the challenges. Algorithms that stand apart, help in solving the challenge in addition to performing faster and efficient manner. In this paper, we propose a human cognition inspired projection based learning for person-independent human action recognition in the H.264/AVC compressed domain and demonstrate a PBL-McRBEN based approach to help take the machine learning algorithms to the next level. Here, we use gradient image based feature extraction process where the motion vectors and quantization parameters are extracted and these are studied temporally to form several Group of Pictures (GoP). The GoP is then considered individually for two different bench mark data sets and the results are classified using person independent human action recognition. The functional relationship is studied using Projection Based Learning algorithm of the Meta-cognitive Radial Basis Function Network (PBL-McRBFN) which has a cognitive and meta-cognitive component. The cognitive component is a radial basis function network while the Meta-Cognitive Component(MCC) employs self regulation. The McC emulates human cognition like learning to achieve better performance. Performance of the proposed approach can handle sparse information in compressed video domain and provides more accuracy than other pixel domain counterparts. Performance of the feature extraction process achieved more than 90% accuracy using the PTIL-McRBFN which catalyzes the speed of the proposed high speed action recognition algorithm. We have conducted twenty random trials to find the performance in GoP. The results are also compared with other well known classifiers in machine learning literature.