3 resultados para primordial awareness

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oocytes present at birth undergo a progressive process of apoptosis in humans and other mammals as they age. Accepted opinion is that no fresh oocytes are produced other than those present at the time of birth. Studies have shown that DNA repair genes in oocytes of mice and women decline with age, and lack of these genes show higher DNA breaks and increased oocyte death rates. In contrast to the ethical problems associated with monitoring the changes in DNA double-strand breaks in oocytes from young and old humans, it is relatively easy to carry out such a study using a rodent model. In this study, the mRNA levels of DNA repair genes are compared with protein products of some of the genes in the primordial follicles isolated from immature (18-20 days) and aged (400-450 days) female rats. Results revealed a significant decline in mRNA levels of BRAC1 (P < 0.01), RAD51 (P < 0.05), ERCC2 (P < 0.05), and H2AX (P < 0.01) of DNA repair genes and phospho-protein levels of BRAC1 (P < 0.01) and H2AX (P < 0.05) in primordial follicles of aged rats. Impaired DNA repair is confirmed as a mechanism of oocyte ageing. (C) 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collapse of the primordial gas in the density regime similar to 10(8)-10(10) cm(-3) is controlled by the three-body H-2 formation process, in which the gas can cool faster than free-fall time-a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H-2 cooling, the heating due to H-2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age related decline in reproductive performance in women is well documented and apoptosis has been considered as one of the reasons for the decline of primordial follicle reserve. Recently we observed a decline in the efficiency of DNA repair ability in aged rat primordial follicles as demonstrated by decreased mRNA levels of DNA repair genes BRCA1 and H2AX. In the present study, a two-dimensional electrophoresis (2DE) proteomic approach was employed to identify differentially expressed proteins in primordial follicles isolated from ovaries of immature (approximate to 20 days) and aged (approximate to 400-450 days) rats. Using MALDI-TOF/TOF MS, we identified 13 differentially expressed proteins (p<0.05) which included seven up-regulated and six down-regulated proteins in aged primordial follicles. These proteins are involved in a wide range of biological functions including apoptosis, DNA repair, and the immune system. Interestingly, the differentially expressed proteins such as FIGNL1 (DNA repair) and BOK (apoptotic protein) have not been previously reported in the rat primordial follicles and these proteins can be related to some common features of ovarian aging such as loss of follicle reserve and genome integrity. The quantitative differences of two important proteins BOK and FIGNL1 observed by the proteomic analysis were correlated with the transcript levels, as determined by semi-quantitative RT-PCR. Our results improve the current knowledge about protein factors associated with molecular changes in rat primordial follicles as a function of aging and our understanding of the proteomic processes involved in degenerative changes observed in aging primordial follicles.