8 resultados para prescription opioids
em Indian Institute of Science - Bangalore - Índia
Resumo:
The variation of the viscosity as a function of the sequence distribution in an A-B random copolymer melt is determined. The parameters that characterize the random copolymer are the fraction of A monomers f, the parameter lambda which determines the correlation in the monomer identities along a chain and the Flory chi parameter chi(F) which determines the strength of the enthalpic repulsion between monomers of type A and B. For lambda>0, there is a greater probability of finding like monomers at adjacent positions along the chain, and for lambda<0 unlike monomers are more likely to be adjacent to each other. The traditional Markov model for the random copolymer melt is altered to remove ultraviolet divergences in the equations for the renormalized viscosity, and the phase diagram for the modified model has a binary fluid type transition for lambda>0 and does not exhibit a phase transition for lambda<0. A mode coupling analysis is used to determine the renormalization of the viscosity due to the dependence of the bare viscosity on the local concentration field. Due to the dissipative nature of the coupling. there are nonlinearities both in the transport equation and in the noise correlation. The concentration dependence of the transport coefficient presents additional difficulties in the formulation due to the Ito-Stratonovich dilemma, and there is some ambiguity about the choice of the concentration to be used while calculating the noise correlation. In the Appendix, it is shown using a diagrammatic perturbation analysis that the Ito prescription for the calculation of the transport coefficient, when coupled with a causal discretization scheme, provides a consistent formulation that satisfies stationarity and the fluctuation dissipation theorem. This functional integral formalism is used in the present analysis, and consistency is verified for the present problem as well. The upper critical dimension for this type of renormaliaation is 2, and so there is no divergence in the viscosity in the vicinity of a critical point. The results indicate that there is a systematic dependence of the viscosity on lambda and chi(F). The fluctuations tend to increase the viscosity for lambda<0, and decrease the viscosity for lambda>0, and an increase in chi(F) tends to decrease the viscosity. (C) 1996 American Institute of Physics.
Resumo:
This paper presents an enhanced relational description for the prescription of the grasp requirement and evolution of the posture of a digital human hand towards satisfaction of this requirement. Precise relational description needs anatomical segmentation of the hand geometry into palmar, dorsal and lateral patches using the palm-plane and joint locations information, and operational segmentation of the object geometry into pull,push and lateral patches with due consideration to the effect of friction. Relational description identifies appropriate patches for a desired grasp condition. Satisfaction of this requirement occurs in two discrete stages,namely,contact establishment and post-contact force exertion for object capturing. Contact establishment occurs in four potentially overlapping phases,namely,re-orientation,transfer,pre- shaping,and closing-in. The novel h and re-orientation phase,enables the palm to face the object in a task sequence scenario, transfer takes the wrist to the ball park ; pre-shaping and close-in finally achieves the contact. In this paper, an anatomically pertinent closed-form formulation is presented for the closing-in phase for identification of the point of contact on the patches ,prescribed by the relational description. Since mere contact does not ensure grasp and slip phenomenon at the point of contact on application of force is a common occurrence, the effect of slip in presence of friction has been studied for 2D and 3D object grasping endeavours and a computational generation of the slip locus is presented.A general slip locus is found to be a non-linear curve even on planar faces.Two varieties of slip phenomena,namely,stabilizing and non-stabilizing slips, and their local characteristics have been identified.Study of the evolution of this slip characteristic over the slip locus exhibited diverse grasping behaviour possibilities. Thus, the relational description paradigm not only makes the requirement specification easy and meaningful but also enables high fidelity hand object interaction studies possible.
Resumo:
We consider entanglement entropy in the context of gauge/gravity duality for conformal field theories in even dimensions. The holographic prescription due to Ryu and Takayanagi (RT) leads to an equation describing how the entangling surface extends into the bulk geometry. We show that setting to zero, the timetime component of the Brown-York stress tensor evaluated on the co-dimension 1 entangling surface, leads to the same equation. By considering a spherical entangling surface as an example, we observe that the Euclidean actionmethods in AdS/CFT will lead to the RT area functional arising as a counterterm needed to regularize the stress tensor. We present arguments leading to a justification for the minimal area prescription.
Resumo:
We construct cosmological solutions of higher spin gravity in 2 + 1 dimensional de Sitter space. We show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary conformal field theory partition function, and it reduces to Gibbons-Hawking thermodynamics in the spin-2 case. By using the prescription of Maldacena, we relate the thermodynamics of these solutions to those of higher spin black holes in AdS(3).
Resumo:
We propose an analytic perturbative scheme in the spirit of Lord Rayleigh's work for determining the eigenvalues of the Helmholtz equation in three dimensions inside an arbitrary boundary where the eigenfunction satisfies either the Dirichlet boundary condition or the Neumann boundary condition. Although numerous works are available in the literature for arbitrary boundaries in two dimensions, to the best of our knowledge the formulation in three dimensions is proposed for the first time. In this novel prescription, we have expanded the arbitrary boundary in terms of spherical harmonics about an equivalent sphere and obtained perturbative closed-form solutions at each order for the problem in terms of corrections to the equivalent spherical boundary for both the boundary conditions. This formulation is in parallel with the standard time-independent Rayleigh-Schrodinger perturbation theory. The efficacy of the method is tested by comparing the perturbative values against the numerically calculated eigenvalues for spheroidal, superegg and superquadric shaped boundaries. It is shown that this perturbation works quite well even for wide departure from spherical shape and for higher excited states too. We believe this formulation would find applications in the field of quantum dots and acoustical cavities.
Resumo:
We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential mu, the deformation is related at high temperatures to a higher spin black hole in hs0] theory on AdS(3) spacetime. We calculate the order mu(2) corrections to the single interval Renyi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order mu(2) corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Renyi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Renyi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.
Resumo:
In this paper, based on the AdS(2)/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z -> infinity). In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z = 5 fixed point. (C) 2015 The Author. Published by Elsevier B.V.
Resumo:
Aerosol loading over the South Asian region has the potential to affect the monsoon rainfall, Himalayan glaciers and regional air-quality, with implications for the billions in this region. While field campaigns and network observations provide primary data, they tend to be location/season specific. Numerical models are useful to regionalize such location-specific data. Studies have shown that numerical models underestimate the aerosol scenario over the Indian region, mainly due to shortcomings related to meteorology and the emission inventories used. In this context, we have evaluated the performance of two such chemistry-transport models: WRF-Chem and SPRINTARS over an India-centric domain. The models differ in many aspects including physical domain, horizontal resolution, meteorological forcing and so on etc. Despite these differences, both the models simulated similar spatial patterns of Black Carbon (BC) mass concentration, (with a spatial correlation of 0.9 with each other), and a reasonable estimates of its concentration, though both of them under-estimated vis-a-vis the observations. While the emissions are lower (higher) in SPRINTARS (WRF-Chem), overestimation of wind parameters in WRF-Chem caused the concentration to be similar in both models. Additionally, we quantified the under-estimations of anthropogenic BC emissions in the inventories used these two models and three other widely used emission inventories. Our analysis indicates that all these emission inventories underestimate the emissions of BC over India by a factor that ranges from 1.5 to 2.9. We have also studied the model simulations of aerosol optical depth over the Indian region. The models differ significantly in simulations of AOD, with WRF-Chem having a better agreement with satellite observations of AOD as far as the spatial pattern is concerned. It is important to note that in addition to BC, dust can also contribute significantly to AOD. The models differ in simulations of the spatial pattern of mineral dust over the Indian region. We find that both meteorological forcing and emission formulation contribute to these differences. Since AOD is column integrated parameter, description of vertical profiles in both models, especially since elevated aerosol layers are often observed over Indian region, could be also a contributing factor. Additionally, differences in the prescription of the optical properties of BC between the models appear to affect the AOD simulations. We also compared simulation of sea-salt concentration in the two models and found that WRF-Chem underestimated its concentration vis-a-vis SPRINTARS. The differences in near-surface oceanic wind speeds appear to be the main source of this difference. In-spite of these differences, we note that there are similarities in their simulation of spatial patterns of various aerosol species (with each other and with observations) and hence models could be valuable tools for aerosol-related studies over the Indian region. Better estimation of emission inventories could improve aerosol-related simulations. (C) 2015 Elsevier Ltd. All rights reserved.