20 resultados para preprocessing

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instruction scheduling with an automaton-based resource conflict model is well-established for normal scheduling. Such models have been generalized to software pipelining in the modulo-scheduling framework. One weakness with existing methods is that a distinct automaton must be constructed for each combination of a reservation table and initiation interval. In this work, we present a different approach to model conflicts. We construct one automaton for each reservation table which acts as a compact encoding of all the conflict automata for this table, which can be recovered for use in modulo-scheduling. The basic premise of the construction is to move away from the Proebsting-Fraser model of conflict automaton to the Muller model of automaton modelling issue sequences. The latter turns out to be useful and efficient in this situation. Having constructed this automaton, we show how to improve the estimate of resource constrained initiation interval. Such a bound is always better than the average-use estimate. We show that our bound is safe: it is always lower than the true initiation interval. This use of the automaton is orthogonal to its use in modulo-scheduling. Once we generate the required information during pre-processing, we can compute the lower bound for a program without any further reference to the automaton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of variable bit rate compressed video traffic is critical to dynamic allocation of resources in a network. In this paper, we propose a technique for preprocessing the dataset used for training a video traffic predictor. The technique involves identifying the noisy instances in the data using a fuzzy inference system. We focus on three prediction techniques, namely, linear regression, neural network and support vector regression and analyze their performance on H.264 video traces. Our experimental results reveal that data preprocessing greatly improves the performance of linear regression and neural network, but is not effective on support vector regression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of techniques for scaling up classifiers so that they can be applied to problems with large datasets of training examples is one of the objectives of data mining. Recently, AdaBoost has become popular among machine learning community thanks to its promising results across a variety of applications. However, training AdaBoost on large datasets is a major problem, especially when the dimensionality of the data is very high. This paper discusses the effect of high dimensionality on the training process of AdaBoost. Two preprocessing options to reduce dimensionality, namely the principal component analysis and random projection are briefly examined. Random projection subject to a probabilistic length preserving transformation is explored further as a computationally light preprocessing step. The experimental results obtained demonstrate the effectiveness of the proposed training process for handling high dimensional large datasets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of data structures such as inverted file, multi-lists, quad tree, k-d tree, range tree, polygon tree, quintary tree, multidimensional tries, segment tree, doubly chained tree, the grid file, d-fold tree. super B-tree, Multiple Attribute Tree (MAT), etc. have been studied for multidimensional searching and related problems. Physical data base organization, which is an important application of multidimensional searching, is traditionally and mostly handled by employing inverted file. This study proposes MAT data structure for bibliographic file systems, by illustrating the superiority of MAT data structure over inverted file. Both the methods are compared in terms of preprocessing, storage and query costs. Worst-case complexity analysis of both the methods, for a partial match query, is carried out in two cases: (a) when directory resides in main memory, (b) when directory resides in secondary memory. In both cases, MAT data structure is shown to be more efficient than the inverted file method. Arguments are given to illustrate the superiority of MAT data structure in an average case also. An efficient adaptation of MAT data structure, that exploits the special features of MAT structure and bibliographic files, is proposed for bibliographic file systems. In this adaptation, suitable techniques for fixing and ranking of the attributes for MAT data structure are proposed. Conclusions and proposals for future research are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The removal of noise and outliers from health signals is an important problem in jet engine health monitoring. Typically, health signals are time series of damage indicators, which can be sensor measurements or features derived from such measurements. Sharp or sudden changes in health signals can represent abrupt faults and long term deterioration in the system is typical of gradual faults. Simple linear filters tend to smooth out the sharp trend shifts in jet engine signals and are also not good for outlier removal. We propose new optimally designed nonlinear weighted recursive median filters for noise removal from typical health signals of jet engines. Signals for abrupt and gradual faults and with transient data are considered. Numerical results are obtained for a jet engine and show that preprocessing of health signals using the proposed filter significantly removes Gaussian noise and outliers and could therefore greatly improve the accuracy of diagnostic systems. [DOI: 10.1115/1.3200907].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an approach based on Zernike moments and Delaunay triangulation for localization of hand-written text in machine printed text documents. The Zernike moments of the image are first evaluated and we classify the text as hand-written using the nearest neighbor classifier. These features are independent of size, slant, orientation, translation and other variations in handwritten text. We then use Delaunay triangulation to reclassify the misclassified text regions. When imposing Delaunay triangulation on the centroid points of the connected components, we extract features based on the triangles and reclassify the text. We remove the noise components in the document as part of the preprocessing step so this method works well on noisy documents. The success rate of the method is found to be 86%. Also for specific hand-written elements such as signatures or similar text the accuracy is found to be even higher at 93%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel approach for lossless as well as lossy compression of monochrome images using Boolean minimization is proposed. The image is split into bit planes. Each bit plane is divided into windows or blocks of variable size. Each block is transformed into a Boolean switching function in cubical form, treating the pixel values as output of the function. Compression is performed by minimizing these switching functions using ESPRESSO, a cube based two level function minimizer. The minimized cubes are encoded using a code set which satisfies the prefix property. Our technique of lossless compression involves linear prediction as a preprocessing step and has compression ratio comparable to that of JPEG lossless compression technique. Our lossy compression technique involves reducing the number of bit planes as a preprocessing step which incurs minimal loss in the information of the image. The bit planes that remain after preprocessing are compressed using our lossless compression technique based on Boolean minimization. Qualitatively one cannot visually distinguish between the original image and the lossy image and the value of mean square error is kept low. For mean square error value close to that of JPEG lossy compression technique, our method gives better compression ratio. The compression scheme is relatively slower while the decompression time is comparable to that of JPEG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper looks at the complexity of four different incremental problems. The following are the problems considered: (1) Interval partitioning of a flow graph (2) Breadth first search (BFS) of a directed graph (3) Lexicographic depth first search (DFS) of a directed graph (4) Constructing the postorder listing of the nodes of a binary tree. The last problem arises out of the need for incrementally computing the Sethi-Ullman (SU) ordering [1] of the subtrees of a tree after it has undergone changes of a given type. These problems are among those that claimed our attention in the process of our designing algorithmic techniques for incremental code generation. BFS and DFS have certainly numerous other applications, but as far as our work is concerned, incremental code generation is the common thread linking these problems. The study of the complexity of these problems is done from two different perspectives. In [2] is given the theory of incremental relative lower bounds (IRLB). We use this theory to derive the IRLBs of the first three problems. Then we use the notion of a bounded incremental algorithm [4] to prove the unboundedness of the fourth problem with respect to the locally persistent model of computation. Possibly, the lower bound result for lexicographic DFS is the most interesting. In [5] the author considers lexicographic DFS to be a problem for which the incremental version may require the recomputation of the entire solution from scratch. In that sense, our IRLB result provides further evidence for this possibility with the proviso that the incremental DFS algorithms considered be ones that do not require too much of preprocessing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The removal of noise and outliers from measurement signals is a major problem in jet engine health monitoring. Topical measurement signals found in most jet engines include low rotor speed, high rotor speed. fuel flow and exhaust gas temperature. Deviations in these measurements from a baseline 'good' engine are often called measurement deltas and the health signals used for fault detection, isolation, trending and data mining. Linear filters such as the FIR moving average filter and IIR exponential average filter are used in the industry to remove noise and outliers from the jet engine measurement deltas. However, the use of linear filters can lead to loss of critical features in the signal that can contain information about maintenance and repair events that could be used by fault isolation algorithms to determine engine condition or by data mining algorithms to learn valuable patterns in the data, Non-linear filters such as the median and weighted median hybrid filters offer the opportunity to remove noise and gross outliers from signals while preserving features. In this study. a comparison of traditional linear filters popular in the jet engine industry is made with the median filter and the subfilter weighted FIR median hybrid (SWFMH) filter. Results using simulated data with implanted faults shows that the SWFMH filter results in a noise reduction of over 60 per cent compared to only 20 per cent for FIR filters and 30 per cent for IIR filters. Preprocessing jet engine health signals using the SWFMH filter would greatly improve the accuracy of diagnostic systems. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a method to encode a 3D magnetic resonance image data and a decoder in such way that fast access to any 2D image is possible by decoding only the corresponding information from each subband image and thus provides minimum decoding time. This will be of immense use for medical community, because most of the PET and MRI data are volumetric data. Preprocessing is carried out at every level before wavelet transformation, to enable easier identification of coefficients from each subband image. Inclusion of special characters in the bit stream facilitates access to corresponding information from the encoded data. Results are taken by performing Daub4 along x (row), y (column) direction and Haar along z (slice) direction. Comparable results are achieved with the existing technique. In addition to that decoding time is reduced by 1.98 times. Arithmetic coding is used to encode corresponding information independently

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diffusion equation-based modeling of near infrared light propagation in tissue is achieved by using finite-element mesh for imaging real-tissue types, such as breast and brain. The finite-element mesh size (number of nodes) dictates the parameter space in the optical tomographic imaging. Most commonly used finite-element meshing algorithms do not provide the flexibility of distinct nodal spacing in different regions of imaging domain to take the sensitivity of the problem into consideration. This study aims to present a computationally efficient mesh simplification method that can be used as a preprocessing step to iterative image reconstruction, where the finite-element mesh is simplified by using an edge collapsing algorithm to reduce the parameter space at regions where the sensitivity of the problem is relatively low. It is shown, using simulations and experimental phantom data for simple meshes/domains, that a significant reduction in parameter space could be achieved without compromising on the reconstructed image quality. The maximum errors observed by using the simplified meshes were less than 0.27% in the forward problem and 5% for inverse problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we develop a game theoretic approach for clustering features in a learning problem. Feature clustering can serve as an important preprocessing step in many problems such as feature selection, dimensionality reduction, etc. In this approach, we view features as rational players of a coalitional game where they form coalitions (or clusters) among themselves in order to maximize their individual payoffs. We show how Nash Stable Partition (NSP), a well known concept in the coalitional game theory, provides a natural way of clustering features. Through this approach, one can obtain some desirable properties of the clusters by choosing appropriate payoff functions. For a small number of features, the NSP based clustering can be found by solving an integer linear program (ILP). However, for large number of features, the ILP based approach does not scale well and hence we propose a hierarchical approach. Interestingly, a key result that we prove on the equivalence between a k-size NSP of a coalitional game and minimum k-cut of an appropriately constructed graph comes in handy for large scale problems. In this paper, we use feature selection problem (in a classification setting) as a running example to illustrate our approach. We conduct experiments to illustrate the efficacy of our approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an iterative algorithm to detect transient segments in audio signals. Short time Fourier transform(STFT) is used to detect rapid local changes in the audio signal. The algorithm has two steps that iteratively - (a) calculate a function of the STFT and (b) build a transient signal. A dynamic thresholding scheme is used to locate the potential positions of transients in the signal. The iterative procedure ensures that genuine transients are built up while the localised spectral noise are suppressed by using an energy criterion. The extracted transient signal is later compared to a ground truth dataset. The algorithm performed well on two databases. On the EBU-SQAM database of monophonic sounds, the algorithm achieved an F-measure of 90% while on our database of polyphonic audio an F-measure of 91% was achieved. This technique is being used as a preprocessing step for a tempo analysis algorithm and a TSR (Transients + Sines + Residue) decomposition scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we discuss the issues related to word recognition in born-digital word images. We introduce a novel method of power-law transformation on the word image for binarization. We show the improvement in image binarization and the consequent increase in the recognition performance of OCR engine on the word image. The optimal value of gamma for a word image is automatically chosen by our algorithm with fixed stroke width threshold. We have exhaustively experimented our algorithm by varying the gamma and stroke width threshold value. By varying the gamma value, we found that our algorithm performed better than the results reported in the literature. On the ICDAR Robust Reading Systems Challenge-1: Word Recognition Task on born digital dataset, as compared to the recognition rate of 61.5% achieved by TH-OCR after suitable pre-processing by Yang et. al. and 63.4% by ABBYY Fine Reader (used as baseline by the competition organizers without any preprocessing), we achieved 82.9% using Omnipage OCR applied on the images after being processed by our algorithm.