3 resultados para pratiques d’évaluation formative

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The firing and delay characteristics of a simple coaxial type of triggered vacuum gap (TVG) are described and compared with the planar type. The designs are new and differ from those reported earlier. By analogy with gaseous breakdown the statistical and formative time lags have been determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional (1D) zinc oxide (ZnO) hexagonal rods have been successfully synthesized by surfactant free hydrothermal process at different temperatures. It can be found that the reaction temperature play a crucial role in the formation of ZnO uniform hexagonal rods. The possible formation processes of 1-D ZnO hexagonal rods were investigated. The zinc hydroxide acts as the morphology-formative intermediate for the formation of ZnO nanorods. Upon excitation at 325 nm, the sample prepared at 180 degrees C show several emission bands at 400 nm (similar to 3.10 eV), 420 nm (similar to 2.95 eV), 482 nm (similar to 2.57 eV) and 524 nm (similar to 2.36 eV) corresponding to different kind of defects. TL studies were carried out by pre-irradiating samples with gamma-rays ranging from 1 to 7 kGy at room temperature. A well resolved glow peak at similar to 354 degrees C was recorded which can be ascribed to deep traps. Furthermore, the defects associated with surface states in ZnO nano-structures are characterized by electron paramagnetic resonance. (C) 2014 Elsevier B.V. All rights reserved.