79 resultados para portable analyzer

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we report a system-level integration of portable microscopy and microfluidics for the realization of optofluidic imaging flow analyzer with a throughput of 450 cells/s. With the use of a cellphone augmented with off-the-shelf optical components and custom designed microfluidics, we demonstrate a portable optofluidic imaging flow analyzer. A multiple microfluidic channel geometry was employed to demonstrate the enhancement of throughput in the context of low frame-rate imaging systems. Using the cell-phone based digital imaging flow analyzer, we have imaged yeast cells present in a suspension. By digitally processing the recorded videos of the flow stream on the cellphone, we demonstrated an automated cell viability assessment of the yeast cell population. In addition, we also demonstrate the suitability of the system for blood cell counting. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Need to analyze particles in a flow? This system takes electrical pulses from acoustical or optical sensors and groups them into bands representing ranges of particle sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Need to analyze particles in a flow? This system takes electrical pulses from acoustical or optical sensors and groups them into bands representing ranges of particle sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomena of nonlinear I-V behavior and electrical switching find extensive applications in power control, information storage, oscillators, etc. The study of I-V characteristics and switching parameters is necessary for the proper application of switching materials and devices. In the present work, a simple low-cost electrical switching analyzer has been developed for the measurement of the electrical characteristics of switching materials and devices. The system developed consists of a microcontroller-based excitation source and a high-speed data acquisition system. The design details of the excitation source, its interface with the high-speed data acquisition system and personal computer, and the details of the application software developed for automated measurements are described. Typical I-V characteristics and switching curves obtained with the system developed are also presented to illustrate the capability of the instrument developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

People in many countries are affected by fluorosis owing to the high levels of fluoride in drinking water. An inexpensive method for estimating the concentration of the fluoride ion in drinking water would be helpful in identifying safe sources of water and also in monitoring the performance of defluoridation techniques. For this purpose, a simple, inexpensive, and portable colorimeter has been developed in the present work. It is used in conjunction with the SPADNS method, which shows a color change in the visible region on addition of water containing fluoride to a reagent solution. Groundwater samples were collected from different parts of the state of Karnataka, India and analysed for fluoride. The results obtained using the colorimeter and the double beam spectrophotometer agreed fairly well. The costs of the colorimeter and of the chemicals required per test were about Rs. 250 (US$ 5) and Rs. 2.5 (US$ 0.05), respectively. In addition, the cost of the chemicals required for constructing the calibration curve was about Rs. 15 (US$ 0.3). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency response analysis is critical in understanding the steady and transient state behavior of any electrical network. Network analyzeror frequency response analyzer is used to determine the frequency response of an electrical network. This paper deals with the design of an inexpensive digitally controlled Network Analyzer. The frequency range of the network analyzer is from 10Hz to 50kHz (suitable range for system studies on most power electronics apparatus). It is composed of a microcontroller (as central processing unit) and a personal computer (as analyzer and display). The communication between the microcontroller and personal computer is established through one of the USB ports. The testing and evaluation of the analyzer is done with RC, RLC and multi-resonant circuits. The design steps, basis of analysis, experimental results, limitation in bandwidth and possible techniques for improvement in performances are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the loss of high mass ions due to their initial thermal energy in ion trap mass analyzers. It provides an analytical expression for estimating the percentage loss of ions of a given mass at a particular temperature, in a trap operating under a predetermined set of conditions. The expression we developed can be used to study the loss of ions due to its initial thermal energy in traps which have nonlinear fields as well as those which have linear fields. The expression for the percentage of ions lost is shown to be a function of the temperature of the ensemble of ions, ion mass and ion escape velocity. An analytical expression for the escape velocity has also been derived in terms of the trapping field, drive frequency and ion mass. Because the trapping field is determined by trap design parameters and operating conditions, it has been possible to study the influence of these parameters on ion loss. The parameters investigated include ion temperature, magnitude of the initial potential applied to the ring electrode (which determines the low mass cut-off), trap size, dimensions of apertures in the endcap electrodes and RF drive frequency. Our studies demonstrate that ion loss due to initial thermal energy increases with increase in mass and that, in the traps investigated, ion escape occurs in the radial direction. Reduction in the loss of high mass ions is favoured by lower ion temperatures, increasing low mass cut-off, increasing trap size, and higher RF drive frequencies. However, dimensions of the apertures in the endcap electrodes do not influence ion loss in the range of aperture sizes considered. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microchip thermocycler, fabricated from silicon and Pyrex #7740 glass, is described. Usual resistive heating has been replaced by induction heating, leading to much simpler fabrication steps. Heating and cooling rates of 6.5 and 4.2 degreesC/s, respectively have been achieved, by optimising the heater dimensions and heating frequency (similar to200 kHz). Four devices are mounted on a heater, resulting in low power consumption (similar to 1.4 W per device on the average). Using simple on-off electronic temperature control, a temperature stability within -0.2 degreesC is achieved. Features such as induction heating, good temperature control, battery operation, and low power consumption make the device suitable for portable applications, particularly in polymerase chain reaction (PCR) systems. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper studies were carried out on two compact electric discharge plasma sources for controlling nitrogen oxides (NOX) emission in diesel engine exhaust. The plasma sources consist of an old television flyback transformer to generate high frequency high voltage ac (HVAC) and an automobile ignition coil to generate the high voltage pulses (HV Pulse). The compact plasma sources are aimed at retrofitting the existing catalytic converters with electric discharge assisted cleaning technique. To enhance NOX removal efficiency cascaded plasma-adsorbent technique has been used. Studies were reported at different flow rates and load conditions of the diesel engine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The key problem tackled in this paper is the development of a stand-alone self-powered sensor to directly sense the spectrum of mechanical vibrations. Such a sensor could be deployed in wide area sensor networks to monitor structural vibrations of large machines (e. g. aircrafts) and initiate corrective action if the structure approaches resonance. In this paper, we study the feasibility of using stretched membranes of polymer piezoelectric polyvinlidene fluoride for low-frequency vibration spectrum sensing. We design and evaluate a low-frequency vibration spectrum sensor that accepts an incoming vibration and directly provides the spectrum of the vibration as the output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential mobility analyzers (DMAs) are commonly used to generate monodisperse nanoparticle aerosols. Commercial DMAs operate at quasi-atmospheric pressures and are therefore not designed to be vacuum-tight. In certain particle synthesis methods, the use of a vacuum-compatible DMA is a requirement as a process step for producing high-purity metallic particles. A vacuum-tight radial DMA (RDMA) has been developed and tested at low pressures. Its performance has been evaluated by using a commercial NANO-DMA as the reference. The performance of this low-pressure RDMA (LP-RDMA) in terms of the width of its transfer function is found to be comparable with that of other NANO-DMAs at atmospheric pressure and is almost independent of the pressure down to 30 mbar. It is shown that LP-RDMA can be used for the classification of nanometer-sized particles (5-20 nm) under low pressure condition (30 mbar) and has been successfully applied to nanoparticles produced by ablating FeNi at low pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the design and development of a portable, hand-operated composite compliant mechanism for estimating the failure-load of cm-sized stiff objects whose stiffness is of the order of 10 s of kN/m. The motivation for the design comes from the need to estimate the failure-load of mesoscale cemented sand specimens in situ, which is not possible with traditional devices used for large specimens or very small specimens. The composite compliant device, developed in this work, consists of two compliant mechanisms: a force-amplifying compliant mechanism (FaCM) to amplify sufficiently the force exerted by hand in order to break the specimen and a displacement-amplifying compliant mechanism (DaCM) to enable measurement of the force using a proximity sensor. The two mechanisms are designed using the selection-maps technique to amplify the force up to 100N by about a factor of 3 and measure the force with a resolution of 15 mN. The composite device, made using a FaCM, a DaCM, and a Hall effect-based proximity sensor, was tested on mesoscale cemented sand specimens that were 10mm in diameter and 20mm in length. The results are compared with those of a large commercial instrument. Through the experiments, it was observed that the failure-load of the cemented sand specimens varied from 0.95N to 24.33 N, depending on the percentage of cementation and curing period. The estimation of the failure-load using the compliant device was found to be within 1.7% of the measurements obtained using the commercial instrument and thus validating the design. The details of the design, prototyping, specimen preparation, testing, and the results comprise the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical microscopy is a versatile and robust tool used for the diagnosis of a plethora of diseases. However, due to various reasons, it remains inaccessible in resource limited settings. In this paper, we present an automated and cost-effective alternative to microscopy for use in clinical diagnostics. With the use of custom optics and microfluidics, we demonstrate a field-portable imaging flow cytometry system. Using the presented system, we have been able to image 586 cells per second. We demonstrate the clinical relevance of the proposed system by differentiating between suspensions of healthy and sphered RBCs based on high-throughput morphometric analysis. The instrument presented here is a major advancement in the domain of field portable diagnostics as it enables fast and robust quantitative diagnostic testing at the point-of-care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.