7 resultados para popular genre
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper we consider the problem of computing an “optimal” popular matching. We assume that our input instance View the MathML source admits a popular matching and here we are asked to return not any popular matching but an optimal popular matching, where the definition of optimality is given as a part of the problem statement; for instance, optimality could be fairness in which case we are required to return a fair popular matching. We show an O(n2+m) algorithm for this problem, assuming that the preference lists are strict, where m is the number of edges in G and n is the number of applicants.
Resumo:
We study the problem of matching applicants to jobs under one-sided preferences: that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be rnore popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if phi(M,T) >= phi(T, M) for all matchings T, where phi(X, Y) is the number of applicants that prefer X to Y. Previously studied solution concepts based oil the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distributions over matchings in the input graph. The function phi that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if phi(P,Q) >= phi(Q,P) for all mixed matchings Q. We show that popular mixed matchings always exist. and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem.
Resumo:
We consider the problem of matching people to jobs, where each person ranks a subset of jobs in an order of preference, possibly involving ties. There are several notions of optimality about how to best match each person to a job; in particular, popularity is a natural and appealing notion of optimality. However, popular matchings do not always provide an answer to the problem of determining an optimal matching since there are simple instances that do not adroit popular matchings. This motivates the following extension of the popular rnatchings problem:Given a graph G; = (A boolean OR J, E) where A is the set of people and J is the set of jobs, and a list < c(1), c(vertical bar J vertical bar)) denoting upper bounds on the capacities of each job, does there exist (x(1), ... , x(vertical bar J vertical bar)) such that setting the capacity of i-th, job to x(i) where 1 <= x(i) <= c(i), for each i, enables the resulting graph to admit a popular matching. In this paper we show that the above problem is NP-hard. We show that the problem is NP-hard even when each c is 1 or 2.
Resumo:
Objective : The main objective of this work was to study the antipyretic and antibacterial activity of C. erectus (Buch.-Ham.) Verdcourt leaf extract in an experimental albino rat model. Materials and Methods : The methanol extract of C. erectus leaf (MECEL) was evaluated for its antipyretic potential on normal body temperature and Brewers yeast-induced pyrexia in albino rats model. While the antibacterial activity of MECEL against five Gram (-) and three Gram () bacterial strains and antimycotic activity was investigated against four fungi using agar disk diffusion and microdilution methods. Result : Yeast suspension (10 mL/kg b.w.) elevated rectal temperature after 19 h of subcutaneous injection. Oral administration of MECEL at 100 and 200 mg/kg b.w. showed significant reduction of normal rectal body temperature and yeast-provoked elevated temperature (38.8 0.2 and 37.6 0.4, respectively, at 2-3 h) in a dose-dependent manner, and the effect was comparable to that of the standard antipyretic drug-paracetamol (150 mg/kg b.w.). MECEL at 2 mg/disk showed broad spectrum of growth inhibition activity against both groups of bacteria. However, MECEL was not effective against the yeast strains tested in this study. Conclusion : This study revealed that the methanol extract of C. erectus exhibited significant antipyretic activity in the tested models and antibacterial activity as well, and may provide the scientific rationale for its popular use as antipyretic agent in Khamptiss folk medicines.
Resumo:
We consider the problem of matching people to items, where each person ranks a subset of items in an order of preference, possibly involving ties. There are several notions of optimality about how to best match a person to an item; in particular, popularity is a natural and appealing notion of optimality. A matching M* is popular if there is no matching M such that the number of people who prefer M to M* exceeds the number who prefer M* to M. However, popular matchings do not always provide an answer to the problem of determining an optimal matching since there are simple instances that do not admit popular matchings. This motivates the following extension of the popular matchings problem: Given a graph G = (A U 3, E) where A is the set of people and 2 is the set of items, and a list < c(1),...., c(vertical bar B vertical bar)> denoting upper bounds on the number of copies of each item, does there exist < x(1),...., x(vertical bar B vertical bar)> such that for each i, having x(i) copies of the i-th item, where 1 <= xi <= c(i), enables the resulting graph to admit a popular matching? In this paper we show that the above problem is NP-hard. We show that the problem is NP-hard even when each c(i) is 1 or 2. We show a polynomial time algorithm for a variant of the above problem where the total increase in copies is bounded by an integer k. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study the problem of matching applicants to jobs under one-sided preferences; that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be more popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if phi(M, T) >= phi(T, M) for all matchings T, where phi(X, Y) is the number of applicants that prefer X to Y. Previously studied solution concepts based on the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distribution over matchings in the input graph. The function phi that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if phi(P, Q) >= phi(Q, P) for all mixed matchings Q. We show that popular mixed matchings always exist and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The advent and evolution of geohazard warning systems is a very interesting study. The two broad fields that are immediately visible are that of geohazard evaluation and subsequent warning dissemination. Evidently, the latter field lacks any systematic study or standards. Arbitrarily organized and vague data and information on warning techniques create confusion and indecision. The purpose of this review is to try and systematize the available bulk of information on warning systems so that meaningful insights can be derived through decidable flowcharts, and a developmental process can be undertaken. Hence, the methods and technologies for numerous geohazard warning systems have been assessed by putting them into suitable categories for better understanding of possible ways to analyze their efficacy as well as shortcomings. By establishing a classification scheme based on extent, control, time period, and advancements in technology, the geohazard warning systems available in any literature could be comprehensively analyzed and evaluated. Although major advancements have taken place in geohazard warning systems in recent times, they have been lacking a complete purpose. Some systems just assess the hazard and wait for other means to communicate, and some are designed only for communication and wait for the hazard information to be provided, which usually is after the mishap. Primarily, systems are left at the mercy of administrators and service providers and are not in real time. An integrated hazard evaluation and warning dissemination system could solve this problem. Warning systems have also suffered from complexity of nature, requirement of expert-level monitoring, extensive and dedicated infrastructural setups, and so on. The user community, which would greatly appreciate having a convenient, fast, and generalized warning methodology, is surveyed in this review. The review concludes with the future scope of research in the field of hazard warning systems and some suggestions for developing an efficient mechanism toward the development of an automated integrated geohazard warning system. DOI: 10.1061/(ASCE)NH.1527-6996.0000078. (C) 2012 American Society of Civil Engineers.