17 resultados para polynomial systems
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this technical note, it is established that the unassignable polynomial defined for a not strongly connected decentralized control system is not equal to Davison's fixed polynomial. This leads to a "sufficient condition" for the equality of the unassignable polynomial and Davison's fixed polynomial for strongly connected systems.
Resumo:
Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.
Resumo:
This paper considers the on-line identification of a non-linear system in terms of a Hammerstein model, with a zero-memory non-linear gain followed by a linear system. The linear part is represented by a Laguerre expansion of its impulse response and the non-linear part by a polynomial. The identification procedure involves determination of the coefficients of the Laguerre expansion of correlation functions and an iterative adjustment of the parameters of the non-linear gain by gradient methods. The method is applicable to situations involving a wide class of input signals. Even in the presence of additive correlated noise, satisfactory performance is achieved with the variance of the error converging to a value close to the variance of the noise. Digital computer simulation establishes the practicability of the scheme in different situations.
Resumo:
In this paper a method of solving certain third-order non-linear systems by using themethod of ultraspherical polynomial approximation is proposed. By using the method of variation of parameters the third-order equation is reduced to three partial differential equations. Instead of being averaged over a cycle, the non-linear functions are expanded in ultraspherical polynomials and with only the constant term retained, the equations are solved. The results of the procedure are compared with the numerical solutions obtained on a digital computer. A degenerate third-order system is also considered and results obtained for the above system are compared with numerical results obtained on the digital computer. There is good agreement between the results obtained by the proposed method and the numerical solution obtained on digital computer.
Resumo:
The parametric resonance in a system having two modes of the same frequency is studied. The simultaneous occurence of the instabilities of the first and second kind is examined, by using a generalized perturbation procedure. The region of instability in the first approximation is obtained by using the Sturm's theorem for the roots of a polynomial equation.
Resumo:
Self-tuning is applied to the control of nonlinear systems represented by the Hammerstein model wherein the nonlinearity is any odd-order polynomial. But control costing is not feasible in general. Initial relay control is employed to contain the deviations.
Resumo:
This paper deals with an approximate method of analysis of non-linear, non-conservative systems of two degrees of freedom. The approximate equations for amplitude and phase are obtained by a generalized averaging technique based on the ultraspherical polynomial approximation. The method is illustrated by an example of a spring-mass-damper system.
Resumo:
A method of testing for parametric faults of analog circuits based on a polynomial representation of fault-free function of the circuit is presented. The response of the circuit under test (CUT) is estimated as a polynomial in the applied input voltage at relevant frequencies in addition to DC. Classification or Cur is based on a comparison of the estimated polynomial coefficients with those of the fault free circuit. This testing method requires no design for test hardware as might be added to the circuit fly some other methods. The proposed method is illustrated for a benchmark elliptic filter. It is shown to uncover several parametric faults causing deviations as small as 5% from the nominal values.
Resumo:
The possibility of applying two approximate methods for determining the salient features of response of undamped non-linear spring mass systems subjected to a step input, is examined. The results obtained on the basis of these approximate methods are compared with the exact results that are available for some particular types of spring characteristics. The extension of the approximate methods for non-linear systems with general polynomial restoring force characteristics is indicated.
Resumo:
This paper deals with the approximate solutions of non-linear autonomous systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on the ultraspherical polynomial expansions. The method is illustrated with examples and the results are compared with the digital and analog computer solutions. There is a close agreement between the analytical and exact results.
An approximate analysis of non-linear non-conservative systems subjected to step function excitation
Resumo:
This paper deals with the approximate analysis of the step response of non-linear nonconservative systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on ultraspherical polynomial expansions. The Krylov-Bogoliubov results are given by a particular set of these polynomials. The method has been applied to study the step response of a cubic spring mass system in presence of viscous, material, quadratic, and mixed types of damping. The approximate results are compared with the digital and analogue computer solutions and a close agreement has been found between the analytical and the exact results.
Resumo:
A linear state feedback gain vector used in the control of a single input dynamical system may be constrained because of the way feedback is realized. Some examples of feedback realizations which impose constraints on the gain vector are: static output feedback, constant gain feedback for several operating points of a system, and two-controller feedback. We consider a general class of problems of stabilization of single input dynamical systems with such structural constraints and give a numerical method to solve them. Each of these problems is cast into a problem of solving a system of equalities and inequalities. In this formulation, the coefficients of the quadratic and linear factors of the closed-loop characteristic polynomial are the variables. To solve the system of equalities and inequalities, a continuous realization of the gradient projection method and a barrier method are used under the homotopy framework. Our method is illustrated with an example for each class of control structure constraint.
Resumo:
The singularity structure of the solutions of a general third-order system, with polynomial right-hand sides of degree less than or equal to two, is studied about a movable singular point, An algorithm for transforming the given third-order system to a third-order Briot-Bouquet system is presented, The dominant behavior of a solution of the given system near a movable singularity is used to construct a transformation that changes the given system directly to a third-order Briot-Bouquet system. The results of Horn for the third-order Briot-Bouquet system are exploited to give the complete form of the series solutions of the given third-order system; convergence of these series in a deleted neighborhood of the singularity is ensured, This algorithm is used to study the singularity structure of the solutions of the Lorenz system, the Rikitake system, the three-wave interaction problem, the Rabinovich system, the Lotka-Volterra system, and the May-Leonard system for different sets of parameter values. The proposed approach goes far beyond the ARS algorithm.
Resumo:
The repeated or closely spaced eigenvalues and corresponding eigenvectors of a matrix are usually very sensitive to a perturbation of the matrix, which makes capturing the behavior of these eigenpairs very difficult. Similar difficulty is encountered in solving the random eigenvalue problem when a matrix with random elements has a set of clustered eigenvalues in its mean. In addition, the methods to solve the random eigenvalue problem often differ in characterizing the problem, which leads to different interpretations of the solution. Thus, the solutions obtained from different methods become mathematically incomparable. These two issues, the difficulty of solving and the non-unique characterization, are addressed here. A different approach is used where instead of tracking a few individual eigenpairs, the corresponding invariant subspace is tracked. The spectral stochastic finite element method is used for analysis, where the polynomial chaos expansion is used to represent the random eigenvalues and eigenvectors. However, the main concept of tracking the invariant subspace remains mostly independent of any such representation. The approach is successfully implemented in response prediction of a system with repeated natural frequencies. It is found that tracking only an invariant subspace could be sufficient to build a modal-based reduced-order model of the system. Copyright (C) 2012 John Wiley & Sons, Ltd.
On the sphere decoding complexity of high-rate multigroup decodable STBCs in asymmetric MIMO systems
Resumo:
A space-time block code (STBC) is said to be multigroup decodable if the information symbols encoded by it can be partitioned into two or more groups such that each group of symbols can be maximum-likelihood (ML) decoded independently of the other symbol groups. In this paper, we show that the upper triangular matrix encountered during the sphere decoding of a linear dispersion STBC can be rank-deficient even when the rate of the code is less than the minimum of the number of transmit and receive antennas. We then show that all known families of high-rate (rate greater than 1) multigroup decodable codes have rank-deficient matrix even when the rate is less than the number of transmit and receive antennas, and this rank-deficiency problem arises only in asymmetric MIMO systems when the number of receive antennas is strictly less than the number of transmit antennas. Unlike the codes with full-rank matrix, the complexity of the sphere decoding-based ML decoder for STBCs with rank-deficient matrix is polynomial in the constellation size, and hence is high. We derive the ML sphere decoding complexity of most of the known high-rate multigroup decodable codes, and show that for each code, the complexity is a decreasing function of the number of receive antennas.