245 resultados para polymer supported catalysts
em Indian Institute of Science - Bangalore - Índia
Resumo:
Copper(II) complexes of quaternised poly(4-vinylpyridine) (PVP) of different degrees of quaternisation and copper content have been prepared by crosslinking the polymer with 1,2-dibromoethane in the presence of Cu2+ ion as template. The stability constant of the PVP---Cu(II) complexes is found to increase with the degree of crosslinking quaternisation of the resin, but the rate at which Cu2+ is adsorbed by the resin decreases. An optimum combination of both stability and rate can be achieved with a moderate degree (31%) of crosslinking. A kinetic study reveals that quaternisation increases significantly the catalytic activity of the complex for the oxidation of S2O2−3 by O2 compared with PVP----Cu(II) without quaternisation, but it deactivates the complex for the oxidation of both S3O2−6 and S4O2−6. The batch reactor oxidation kinetics at pH 2.16, where the rate is observed to be maximum, is well explained by the Langmuir—Hinshelwood model assuming the coordination of both O2 and thioanion to Cu(II) as a precursor to the oxidation reaction.
Resumo:
Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.
Resumo:
Calcined samples of chromia supported on Al2O3, ZnO, or SnO2 show both Cr(VI) and Cr(III) on the surface, Cr(VI) being preponderant in the case of Al2O3-supported catalysts. The proportion of Cr(VI) decreases with increase in Cr content of the calcined catalysts. Reduction of the supported chromia catalysts in H2 at 720 K for 1 hr gives rise to Cr(III) and Cr(V). On carrying out the dehydrogenation of cyclohexane on the chromia catalysts a higher proportion of Cr(V) is found than after treatment with hydrogen. Vanadia supported on Al2O3 or MoO3 shows significant proportion of V(IV) on carrying out the oxidation of toluene on the catalysts. Calcined MoO3 (10%)/Al2O3 shows only Mo(VI) on the surface at 300 K, but on heating to 670 K in vacuum shows the presence of a considerable proportion of Mo(V) which on cooling disproportionates to Mo(IV) and Mo(VI). Mo(V) is noticed on surfaces of this catalyst on reduction with hydrogen as also on carrying out dehydrogenation of cyclohexane. While Bi2MoO6 shows only Mo(VI) on the surface at 300 K, heating it to 670 K in vacuum changes it entirely to Mo(V) which then gives rise to Mo(IV) and Mo(VI) on cooling.
Resumo:
In the present study, titanium nitride which shows exceptional stability, extreme corrosion resistance, good electronic conductivity and adhesion behaviour is used to support platinum particles and then used for methanol oxidation in an alkaline medium. The catalyst shows very good CO tolerance for the electrochemical oxidation of methanol. In situ infrared spectroelectrochemical data show the remarkable ability of TiN to decompose water at low over potentials leading to -OH type functional groups on its surface which in turn help in alleviating the carbon monoxide poisoning associated with methanol oxidation. TiN supported catalysts are found to be very good in terms of long term stability, exchange current density and stable currents at low over voltages. Supporting evidence from X-ray photoelectron spectroscopic data and cyclic voltammetry clearly demonstrates the usefulness of TiN supported Pt catalysts for efficient methanol oxidation in alkaline media.
Resumo:
Molybdenum carbide (MoC) and tungsten carbide (WC) are synthesized by direct carbonization method. PtRu catalysts supported on MoC, WC, and Vulcan XC-72R are prepared, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy in conjunction with electrochemistry. Electrochemical activities for the catalysts towards methanol electro-oxidation are studied by cyclic voltammetry. All the electro-catalysts are subjected to accelerated durability test (ADT). The electrochemical activity of carbide-supported electro-catalysts towards methanol electro-oxidation is found to be higher than carbon-supported catalysts before and after ADT. The study suggests that PtRu/MoC and PtRu/WC catalysts are more durable than PtRu/C. Direct methanol fuel cells (DMFCs) with PtRu/MoC and PtRu/WC anodes also exhibit higher performance than the DMFC with PtRu/C anode.
Resumo:
Supported catalysts containing 15 wt.% of molybdenum have been prepared by the incipient wetness impregnation method. CaO, MgO, Al2O3, Zr(OH)4 and Al(OH)3 have been used as supports for the preparation of supported Mo catalysts. Characterisation of all the materials prepared has been carried out through BET surface area measurement, X-ray diffractometry and FT-IR spectroscopy. Catalytic activity measurements have been carried out with reference to structure-sensitive benzyl alcohol conversion in the liquid phase. The percentage conversion of benzyl alcohol to benzaldehyde and toluene varied over a large range depending on the support used for the preparation of catalysts, indicating the importance of the support on catalytic activity of Mo catalysts. Al(OH)3 has been found to be the best support for molybdenum among all the supports used. Support–metal interaction (SMI) has been found to play an important role in determining the catalytic activity of supported catalysts.
Resumo:
Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.
Resumo:
Combustion synthesized (CS) cobalt catalysts deposited over two supports, alumina and silica doped alumina (SDA), were characterized and tested for its Fischer-Tropsch (FT) activity. The properties of CS catalysts were compared to catalysts synthesized by conventional impregnation method (IWI). The CS catalysts resulted in 40-70% increase in the yield of C6+ hydrocarbons compared to MI catalysts. The FT activity for CS catalysts showed formation of long chain hydrocarbon waxes (C24+) compared to the formation of middle distillates (C-10-C-20) for IWI synthesized catalysts, indicating higher hydrocarbon chain growth probability for CS catalysts. This is ascribed to the smaller crystallite sizes, increased degree of cobalt reduction and consequentially, a higher number of active metal sites, exposed over the catalyst surface. Additionally, 12-13% increase in the overall C6+ hydrocarbon yield is realized for SDA-CS catalysts, compared to Al2O3-CS catalysts. The improved performance of CS-SDA catalysts is attributed to 48% increase in cobalt dispersion compared to Al2O3 supported CS catalysts, which is again caused by the decrease in the cobalt -support interaction for SDA supports. The metal support interactions were analyzed using XPS and H-2 TPR-TPD experiments. Combustion method produced catalysts with smaller crystallite size (17-18 nm), higher degree of reduction (similar to 92%) and higher metal dispersion (16.1%) compared to the IWI method. Despite its enhanced properties, the CS catalysts require prominently higher reduction temperatures (similar to 1100-1200 K). The hydrocarbon product analysis for Al2O3 supported catalyst showed higher paraffin wax concentrations compared to SDA supported catalysts, due to the lower surface basicity of Al2O3. This work reveals the impact of the CS catalysts and the nature of support on FT activity and hydrocarbon product spectrum. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
The oxidation of aqueous sulfur dioxide in the presence of polymer-supported copper(II) catalyst is also accompanied by homogeneous oxidation of aqueous sulfur dioxide catalyzed by leached copper(II) ions. Aqueous phase oxidation of sulfur dioxide of low concentrations by oxygen in the presence of dissolved copper(II) has therefore been studied. The solubility of SO2 in aqueous solutions is not affected by the concentration of copper(II) in the solution. In the oxidation reaction, only HSO3- is the reactive S(IV) species. Based on this observation a rate model which also incorporates the effect of sulfuric acid on the solubility of SO2 is developed. The rate model includes a power-law type term for the rate of homogeneous phase reaction obtained from a proposed free-radical chain mechanism for the oxidation. Experiments are conducted at various levels of concentrations of SO2 and O-2 in the gas phase and Cu(II) in the liquid phase. The observed orders are one in each of O-2, Cu(II) and HSO3-. This suggests a first-order termination of the free radicals of bisulfite ions.
Resumo:
A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO2 and TiO2 in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO2 was comparable and was higher than Pd and Pt ion substituted ZrO2. The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO2 supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO2 supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.
Resumo:
Synthesis of short peptides using propargyloxycarbonyl amino acid chlorides as effective coupling reagents and polymer supported tetrathiomolybdate as an efficient deblocking agent are reported.
Resumo:
The usefulness of dioxomolybdenum reagents in oxo-transfer reactions have been reviewed. The redox ability of dioxomolybdenum reagent has been utilized in designing several synthetic methods, which are useful in organic synthesis. Several reactions such as oxidation of alcohols, sulfides, amines, azides olefins etc are accomplished by using dioxomolybdenum reagents. Similarly, it is also demonstrated that dioxomolybdenum complex is useful in performing reduction of aldehydes, ketones, esters, azides etc. A fine tuning of reaction conditions provides suitable conditions to perform either oxidation or reduction by using catalytic amount of reagents. The oxidation reactions are further simplified by employing the polymer supported molybdenum reagents.
Resumo:
We present a green method for the synthesis of ZnO-Au hybrids using an ultrafast microwave-based technique. This method provides good control over the nucleation of the metal nanoparticles on the oxide support, which governs the morphology and microstructure of the hybrids. The hybrids exhibit good catalytic activity for CO oxidation compared to similar hybrids reported in the literature. Detailed XPS investigation reveals the presence of Au-Zn and Au-O bonds at the interface. This surface doping leads to the formation of anionic and cationic Au sites that contribute to the enhanced activity. Our method is general and can be applied for designing other supported catalysts with controlled interfaces.
Resumo:
Capping-free and linker-free nanostructures/hybrids possess superior properties due to the presence of pristine surfaces and interfaces. In this review, various methods for synthesizing pristine nanomaterials are presented along with the general principles involved in their morphology control. In wet chemical synthesis, the interplay between various reaction parameters results in diverse morphology. The fundamental principles behind the evolution of morphology including nanoporous aggregates of metals and other inorganic materials, 2D nanocrystals of metals is elucidated by capping-free methods in aqueous medium. In addition, strategies leading to the attachment of bare noble metal nanoparticles to functional oxide supports/reduced graphene oxide has been demonstrated which can serve as a simple solution for obtaining thermally stable and efficient supported catalysts with free surfaces. Solution based synthesis of linker-free oxide-semiconductor hybrids and capping-free metal nanowires on substrates are also discussed in this context with ZnO/CdS and ultrathin Au nanowires as examples. A simple and rapid microwave-assisted method is highlighted for obtaining such hybrids which can be employed for high-yield production of similar materials.
Resumo:
Novel self-supported natural and synthetic polymer membranes of chitosan-hydroxy ethyl Cellulose-montmorillonite (CS-HEC-MMT) and polyvinyl alcohol (PVA)-polystyrene sulfonic acid (PSSA) are prepared by solution casting method followed by crosslinking. These membranes are employed for air humidification at varying temperatures between 30 degrees C and 70 degrees C and their performances are compared with commercial Nafion membranes. High hater fluxes with desired humidified-air output have been achieved for CS-HEC-MMT and PVA-PSSA hybrid membranes at air-flow rates of 1-10 slpm. Variation in the air/water mixing ratio, dew point, and relative humidity that ultimately results in desired water flux With respect to air-flow rates are also quantified for all the membranes. Water flux values for CS-HEC-MMT are less than those for Nafion (R) and PVA-PSSA membranes, but the operational Stability of CS-HEC-MMT membrane is higher than PVA-PSSA and comparable with Nafion (R) both of which can operate up to 70 degrees C at repetitive cycles of humidification.