4 resultados para planta imersa
em Indian Institute of Science - Bangalore - Índia
Resumo:
Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5' and 3' UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C' and D', boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.
Resumo:
Boerhaavia diffusa is a traditional herbal medicine extensively used in the Ayurveda and Unani forms of medicine in India and many parts of the world. Different parts of the plant are used as an appetizer, alexiteric, eye tonic, for flushing out the renal system, and to treat blood pressure. This study was conducted to evaluate the in vivo genotoxic and/or antigenotoxic potential of punarnavine, a separated alkaloid from the root of B. diffusa using toxicity studies (OECD guideline 474, 1997). The genotoxic and antigenotoxic potential of punarnavine was assayed using the comet assay on lymphocytes, liver, spleen, brain, and bone marrow as well as using the micronucleus test in bone marrow cells including the in vitro chromosomal aberration test. The results demonstrated that none of the tested doses of punarnavine showed genotoxic effects by the comet assay, or clastogenic effects in the micronucleus test. On the other hand, for all cells evaluated, the three tested doses of punarnavine promoted inhibition of DNA damage induced by cyclophosphamide. Based on these results, we concluded that punarnavine, an alkaloid from the Boerhaavia diffusa root, has no genotoxic or clastogenic effects in our experimental conditions. However, it caused a significant decrease in DNA damage induced by cyclophosphamide. It is suggested that the antigenotoxic properties of this alkaloid may be of great pharmacological importance and beneficial for cancer prevention.
Resumo:
Groundnut Bud Necrosis Virus (GBNV) is a tripartite ambisense RNA plant virus that belongs to serogroup IV of Tospovirus genus. Non-Structural protein-m (NSm), which functions as movement protein in tospoviruses, is encoded by the M RNA. In this communication, we demonstrate that despite the absence of any putative transmembrane domain, GBNV NSm associates with membranes when expressed in E. coli as well as in N. benthamiana. Incubation of refolded NSm with liposomes ranging in size from 200-250 nm resulted in changes in the secondary and tertiary structure of NSm. A similar behaviour was observed in the presence of anionic and zwitterionic detergents. Furthermore, the morphology of the liposomes was found to be modified in the presence of NSm. Deletion of coiled coil domain resulted in the inability of in planta expressed NSm to interact with membranes. Further, when the C-terminal coiled coil domain alone was expressed, it was found to be associated with membrane. These results demonstrate that NSm associates with membranes via the C-terminal coiled coil domain and such an association may be important for movement of viral RNA from cell to cell.
Resumo:
Plant viruses exploit the host machinery for targeting the viral genome-movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein la (PDLP la) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER-GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER-GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130-138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm-NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. (C) 2015 Elsevier Inc. All rights reserved.