17 resultados para planning model
em Indian Institute of Science - Bangalore - Índia
Resumo:
The paper aims to assess the potential of decentralized bioenergy technologies in meeting rural energy needs and reducing carbon dioxide (CO2) emissions. Decentralized energy planning is carried out for the year 2005 and 2020. Decentralized energy planning model using goal programming technique is applied for different decentralized scales (village to a district) for obtaining the optimal mix of energy resources and technologies. Results show that it is possible to meet the energy requirements of all the services that are necessary to promote development and improve the quality of life in rural areas from village to district scale, by utilizing the locally available energy resources such as cattle dung, leaf litter and woody biomass feedstock from bioenergy plantation on wastelands. The decentralized energy planning model shows that biomass feedstock required at village to district level can even be obtained from biomass conserved by shifting to biogas for cooking. Under sustainable development scenario, the decentralized energy planning model shows that there is negligible emission of CO2, oxide of Sulphur (SOx) and oxide of nitrogen (NOx), even while meeting all the energy needs.
Resumo:
This paper presents stylized models for conducting performance analysis of the manufacturing supply chain network (SCN) in a stochastic setting for batch ordering. We use queueing models to capture the behavior of SCN. The analysis is clubbed with an inventory optimization model, which can be used for designing inventory policies . In the first case, we model one manufacturer with one warehouse, which supplies to various retailers. We determine the optimal inventory level at the warehouse that minimizes total expected cost of carrying inventory, back order cost associated with serving orders in the backlog queue, and ordering cost. In the second model we impose service level constraint in terms of fill rate (probability an order is filled from stock at warehouse), assuming that customers do not balk from the system. We present several numerical examples to illustrate the model and to illustrate its various features. In the third case, we extend the model to a three-echelon inventory model which explicitly considers the logistics process.
Resumo:
A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.
Resumo:
A river basin that is extensively developed in the downstream reaches and that has a high potential for development in the upper reaches is considered for irrigation planning. A four-reservoir system is modeled on a monthly basis by using a mathematical programing (LP) formulation to find optimum cropping patterns, subject to land, water, and downstream release constraints. The model is applied to a fiver basin in India. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analyzed in the context of multiobjective planning, and the tradeoffs are discussed.
Resumo:
The study deals with the irrigation planning of the Cauvery river basin in peninsular India which is extensively developed in the downstream reaches and has a high potential for development in the upper reaches. A four-reservoir system is modelled on a monthly basis by using a mathematical programming (LP) formulation to find optimum cropping patterns, subject to land, water and downstream release constraints, and applied to the Cauvery basin. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analysed in the context of multiobjective planning and the trade-offs discussed.
Resumo:
This paper presents a Dubins model based strategy to determine the optimal path of a Miniature Air Vehicle (MAV), constrained by a bounded turning rate, that would enable it to fly along a given straight line, starting from an arbitrary initial position and orientation. The method is then extended to meet the same objective in the presence of wind which has a magnitude comparable to the speed of the MAV. We use a modification of the Dubins' path method to obtain the complete optimal solution to this problem in all its generality.
Resumo:
In this paper a nonlinear control has been designed using the dynamic inversion approach for automatic landing of unmanned aerial vehicles (UAVs), along with associated path planning. This is a difficult problem because of light weight of UAVs and strong coupling between longitudinal and lateral modes. The landing maneuver of the UAV is divided into approach, glideslope and flare. In the approach UAV aligns with the centerline of the runway by heading angle correction. In glideslope and flare the UAV follows straight line and exponential curves respectively in the pitch plane with no lateral deviations. The glideslope and flare path are scheduled as a function of approach distance from runway. The trajectory parameters are calculated such that the sink rate at touchdown remains within specified bounds. It is also ensured that the transition from the glideslope to flare path is smooth by ensuring C-1 continuity at the transition. In the outer loop, the roll rate command is generated by assuring a coordinated turn in the alignment segment and by assuring zero bank angle in the glideslope and flare segments. The pitch rate command is generated from the error in altitude to control the deviations from the landing trajectory. The yaw rate command is generated from the required heading correction. In the inner loop, the aileron, elevator and rudder deflections are computed together to track the required body rate commands. Moreover, it is also ensured that the forward velocity of the UAV at the touch down remains close to a desired value by manipulating the thrust of the vehicle. A nonlinear six-DOF model, which has been developed from extensive wind-tunnel testing, is used both for control design as well as to validate it.
Resumo:
This paper describes the use of simulation in the planning and operation of a small fleet of aircraft typical of the air force of a developing country. We consider a single flying base, where the opera tionally ready aircraft are stationed, and a repair depot, where the planes are overhauled. The measure of effectiveness used is "system availability, the percentage of airplanes that are usable. The system is modeled in GPSS as a cyclic queue process. The simulation model is used to perform sensitivity analyses and to validate the principal assumptions of the analytical model on which the simulation model is based.
Resumo:
A tactical gaming model for wargame play between two teams A and B through a control unit C has been developed, which can be handled using IBM personal computers (XT and AT models) having a local area network facility. This simulation model involves communication between the teams involved, logging and validation of the actions of the teams by the control unit. The validation procedure uses statistical and also monte carlo techniques. This model has been developed to evaluate the planning strategies of the teams involved. This application software using about 120 files has been developed in BASIC, DBASE and the associated network software. Experience gained in the instruction courses using this model will also be discussed.
Resumo:
The high cost and extraordinary demands made on sophisticated air defence systems, pose hard challenges to the managers and engineers who plan the operation and maintenance of such systems. This paper presents a study aimed at developing simulation and systems analysis techniques for the effective planning and efficient operation of small fleets of aircraft, typical of the air force of a developing country. We consider an important aspect of fleet management: the problem of resource allocation for achieving prescribed operational effectiveness of the fleet. At this stage, we consider a single flying-base, where the operationally ready aircraft are stationed, and a repair-depot, where the planes are overhauled. An important measure of operational effectiveness is ‘ availability ’, which may be defined as the expected fraction of the fleet fit for use at a given instant. The tour of aircraft in a flying-base, repair-depot system through a cycle of ‘ operationally ready ’ and ‘ scheduled overhaul ’ phases is represented first by a deterministic flow process and then by a cyclic queuing process. Initially the steady-state availability at the flying-base is computed under the assumptions of Poisson arrivals, exponential service times and an equivalent singleserver repair-depot. This analysis also brings out the effect of fleet size on availability. It defines a ‘ small ’ fleet essentially in terms of the important ‘ traffic ’ parameter of service rate/maximum arrival rate.A simulation model of the system has been developed using GPSS to study sensitivity to distributional assumptions, to validate the principal assumptions of the analytical model such as the single-server assumption and to obtain confidence intervals for the statistical parameters of interest.
Resumo:
Present work shows the feasibility of decentralized energy options for the Tumkur district in India. Decentralized energy planning (DEP) involves scaling down energy planning to subnational or regional scales. The important aspect of the energy planning at decentralized level would be to prepare an area-based DEP to meet energy needs and development of alternate energy sources at least-cost to the economy and environment. The geographical coverage and scale reflects the level at which the analysis takes place, which is an important factor in determining the structure of models. In the present work, DEP modeling under different scenarios has been carried out for Tumkur district of India for the year 2020. DEP model is suitably scaled for obtaining the optimal mix of energy resources and technologies using a computer-based goal programming technique. The rural areas of the Tumkur district have different energy needs. Results show that electricity needs can be met by biomass gasifier technology, using biomass feedstock produced by allocating only 12% of the wasteland in the district at 8 t/ha/yr of biomass productivity. Surplus electricity can be produced by adopting the option of biomass power generation from energy plantations. The surplus electricity generated can be supplied to the grid. The sustainable development scenario is a least cost scenario apart from promoting self-reliance, local employment, and environmental benefits. (C) 2010 American Institute of Chemical Engineers Environ Prog, 30: 248-258, 2011
Resumo:
Due to increasing trend of intensive rice cultivation in a coastal river basin, crop planning and groundwater management are imperative for the sustainable agriculture. For effective management, two models have been developed viz. groundwater balance model and optimum cropping and groundwater management model to determine optimum cropping pattern and groundwater allocation from private and government tubewells according to different soil types (saline and non-saline), type of agriculture (rainfed and irrigated) and seasons (monsoon and winter). A groundwater balance model has been developed considering mass balance approach. The components of the groundwater balance considered are recharge from rainfall, irrigated rice and non-rice fields, base flow from rivers and seepage flow from surface drains. In the second phase, a linear programming optimization model is developed for optimal cropping and groundwater management for maximizing the economic returns. The models developed were applied to a portion of coastal river basin in Orissa State, India and optimal cropping pattern for various scenarios of river flow and groundwater availability was obtained.
Reconstructing Solid Model from 2D Scanned Images of Biological Organs for Finite Element Simulation
Resumo:
This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.
Resumo:
Climate projections for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) are made using the newly developed representative concentration pathways (RCPs) under the Coupled Model Inter-comparison Project 5 (CMIP5). This article provides multi-model and multi-scenario temperature and precipitation projections for India for the period 1860-2099 based on the new climate data. We find that CMIP5 ensemble mean climate is closer to observed climate than any individual model. The key findings of this study are: (i) under the business-as-usual (between RCP6.0 and RCP8.5) scenario, mean warming in India is likely to be in the range 1.7-2 degrees C by 2030s and 3.3-4.8 degrees C by 2080s relative to pre-industrial times; (ii) all-India precipitation under the business-as-usual scenario is projected to increase from 4% to 5% by 2030s and from 6% to 14% towards the end of the century (2080s) compared to the 1961-1990 baseline; (iii) while precipitation projections are generally less reliable than temperature projections, model agreement in precipitation projections increases from RCP2.6 to RCP8.5, and from short-to long-term projections, indicating that long-term precipitation projections are generally more robust than their short-term counterparts and (iv) there is a consistent positive trend in frequency of extreme precipitation days (e.g. > 40 mm/day) for decades 2060s and beyond. These new climate projections should be used in future assessment of impact of climate change and adaptation planning. There is need to consider not just the mean climate projections, but also the more important extreme projections in impact studies and as well in adaptation planning.