343 resultados para phosphate transport
em Indian Institute of Science - Bangalore - Índia
Resumo:
Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.
Resumo:
Synthesis of mesoporous zirconium phosphate (MZP) by co-assembly of a tri-block copolymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide and phosphorous trichloride as inorganic precursors is reported. MZP with a specific surface area of 84 m(2) g(-1) average pore diameter of about 17 nm and pore volume of 0.35 cm(3) g(-1) has been prepared, and characterised by X-ray diffraction (XRD) and transmission electron microscopy. Nafion-MZP composite membrane is obtained by employing MZP as a surface-functionalised solid-super-acid-proton-conducting medium as well as all inorganic filler with high affinity to absorb water and fast proton-transport across the electrolyte membrane even under low relative humidity (RH) conditions. The composite membranes have been evaluated in H-2/O-2 polymer electrolyte fuel cells (PEFCs) at varying RH values between 18 and 100%; a peak power density of 355 mW cm(-2) at a load current density of 1,100 mA cm(-2) is achieved with the PEFC employing Nafion-MZP composite membrane while operating at optimum temperature (70 degrees C) under 18% RH and ambient pressure. On operating the PEFC employing Nafion-MZP membrane electrolyte with hydrogen and air feeds at ambient pressure and a RH value of 18%, a peak power density of 285 mW cm(-2) at the optimum temperature (60 degrees C) is achieved. In contrast, operating under identical conditions, a peak power density of only similar to 170 mW cm(-2) is achieved with the PEFC employing Nafion-1135 membrane electrolyte.
Resumo:
The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).
Resumo:
The correlation between magnetic and transport properties is examined by studying poly(4,4'-methylenedianiline)(PMDA) salts and their bases using EPR and conductivity measurements. Five different PMDA salts (doped polymers)were prepared by chemical polymerization of 4,4'-methylenedianiline using different protonic acids. The PMDA bases were obtained by dedoping the salts using ammonium hydroxide. Ambient temperature electrical conductivity measurements show evidence for the doped PMDA system to be highly disordered. The EPR spectra of the samples were recorded in the range 20-200 "C, and the results were analyzed on the basis of the polaron-bipolaron model, which is typical of nondegenerate systems. Both PMDA salts and their bases consist of self-trapped, highly mobile polarons or radical cations. EPR studies on PMDA salts show evidence for the presence of thermally activated and temperature independent (or Pauli type) paramagnetism while the bases show thermally activated, Pauli and Curie-Weiss types of paramagnetism. The paramagnetism arises due to polarons.It is proposed that charge transport takes place through both polarons and bipolarons.
Resumo:
Ionic conductivity in (PEG)(x)LiBr systems is measured using the complex impedance method in the temperature range -20 degrees C to 100 degrees C. For x = 6 and 10, above a certain concentration dependent temperature T-c, a power law fit based on mode coupling theory is seen to better explain the data than the Vogel-Tamman-Fulcher (VTF) expression. Li-7 NMR linewidth measurements indicate two regions of motional narrowing, one attributable to segmental motion and the other to translational diffusion.
Resumo:
Two inorganic-organic hybrid framework iron phosphate-oxalates, I, [N2C4H12](0.5)[Fe-2(HPO4)(C2O4)(1.5)] and II, [Fe-2(OH2)PO4(C2O4)(0.5)] have been synthesized by hydrothermal means and the structures determined by X-ray crystallography. Crystal Data: compound I, monoclinic, spacegroup = P2(1)/c (No. 14), a=7.569(2) Angstrom, b=7.821(2) Angstrom, c=18.033(4) Angstrom, beta=98.8(1)degrees, V=1055.0(4) Angstrom(3), Z=4, M=382.8, D-calc=2.41 g cm(-3) MoK alpha, R-F=0.02; compound II, monoclinic, spacegroup=P2(1)/c (No. 14), a=10.240(1) b=6.375(3) Angstrom, 9.955(1) Angstrom, beta=117.3(1)degrees, V=577.4(1) Angstrom(3), Z=4, M=268.7, D-calc=3.09 g cm(-3) MoK alpha, R-F=0.03. These materials contain a high proportion of three-coordinated oxygens and [Fe2O9] dimeric units, besides other interesting structural features. The connectivity of Fe2O9 is entirely different in the two materials resulting in the formation of a continuous chain of Fe-O-Fe in II. The phosphate-oxalate containing the amine, I, forms well-defined channels. Magnetic susceptibility measurements show Fen to be in the high-spin state (t(2g)(4)e(g)(2)) in II, and in the intermediate-spin state (t(2g)(5)e(g)(1)) in I.
Resumo:
Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.
Resumo:
Uroporphyrinogen decarboxylase (UROD) is a key enzyme in the heme-biosynthetic pathway and in Plasmodium falciparum it occupies a strategic position in the proposed hybrid pathway for heme biosynthesis involving shuttling of intermediates between different subcellular compartments in the parasite. In the present study, we demonstrate that an N-terminally truncated recombinant P. falciparum UROD (r(Δ)PfUROD) over-expressed and purified from Escherichia coli cells, as well as the native enzyme from the parasite were catalytically less efficient compared with the host enzyme, although they were similar in other enzyme parameters. Molecular modeling of PfUROD based on the known crystal structure of the human enzyme indicated that the protein manifests a distorted triose phosphate isomerase (TIM) barrel fold which is conserved in all the known structures of UROD. The parasite enzyme shares all the conserved or invariant amino acid residues at the active and substrate binding sites, but is rich in lysine residues compared with the host enzyme. Mutation of specific lysine residues corresponding to residues at the dimer interface in human UROD enhanced the catalytic efficiency of the enzyme and dimer stability indicating that the lysine rich nature and weak dimer interface of the wild-type PfUROD could be responsible for its low catalytic efficiency. PfUROD was localised to the apicoplast, indicating the requirement of additional mechanisms for transport of the product coproporphyrinogen to other subcellular sites for its further conversion and ultimate heme formation.
Resumo:
Ion transport mechanism in lithium perchlorate (LiClO4)-succinonitrile (SN), a prototype of plastic crystalline soft matter electrolyte is discussed in the context of solvent configurational isomerism and ion solvation. Contributions of both solvent configurational isomerism and ion solvation are reflected in the activation energy for ion conduction in 0-1 M LiClO4-SN samples. Activation energy due to solvent configurational changes, that is, trans-gauche isomerism is observed to be a function of salt content and decreases in presence of salt (except at high salt concentrations, e.g. 1 M LiClO4-SN). The remnant contribution to activation energy is attributed to ion-association. The X-ray diffraction of single crystals obtained using in situ cryo-crystallography confirms directly the observations of the ionic conductivity measurements. Fourier transform infrared spectroscopy and NMR line width measurements provide additional support to our proposition of ion transport in the prototype plastic crystalline electrolyte.
Resumo:
A comparative investigation of charge transport properties is presented, for polymeric [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)], single-wall carbon nanotube (SWNT) and inorganic (indium tin oxide, ITO), transparent conducting electrodes. The polymeric and nanotube systems show hopping transport at low temperatures, in contrast with the disordered-metal transport in ITO. The low temperature magnetotransport (up to 11 T) and high electric-field transport (up to 500 V/cm) indicate the significant role of nanoscopic scale disorder for charge transport in polymer and nanotube based systems. The results show that characteristic length scales like localization length correlates with the nanomorphology in these systems. Further, the high frequency conductivity measurements (up to 30 MHz) in PEDOT:PSS and SWNT follow the extended pair approximation model [σ(ω)=σ(0)[1+(ω/ω0)s].
Resumo:
We report three prominent observations made on the nanoscale charge ordered ( CO) manganites RE(1-x)AE(x)MnO(3) (RE = Nd, Pr; AE = Ca; x = 0.5) probed by temperature dependent magnetization and magneto-transport, coupled with electron magnetic/paramagnetic resonance spectroscopy (EMR/EPR). First, evidence is presented to show that the predominant ground state magnetic phase in nanoscale CO manganites is ferromagnetic and it coexists with a residual anti-ferromagnetic phase. Secondly, the shallow minimum in the temperature dependence of the EPR linewidth shows the presence of a charge ordered phase in nanoscale manganites which was shown to be absent from the DC static magnetization and transport measurements. Thirdly, the EPR linewidth, reflective of spin dynamics, increases significantly with a decrease of particle size in CO manganites. We discuss the interesting observations made on various samples of different particle sizes and give possible explanations. We have shown that EMR spectroscopy is a highly useful technique to probe the 'hindered charge ordered phase' in nanoscale CO manganites, which is not possible by static DC magnetization and transport measurements.
Resumo:
Pressure transitions of Se-Te alloys have been studied over the entire range of compositions. Conductivities have also been measured as a function of temperature and alloy composition. Transition pressures, activation barriers and isothermal conductivities exhibit distinct changes of slope in their variation as a function of composition at about 8 at % of Te. Transition pressures change slope at not, vert, similar 35% Te also. An attempt has been made to explain these observations on the basis of the size effect of Te which, in turn, affects the electron energy dispersions in the band structure.
Resumo:
Solutions are obtained for the stream function and the pressure field for the flow of non-Newtonian fluids in a tube by long peristaltic waves of arbitrary shape. The axial velocity profiles and stress distributions on the wall are discussed for particular waves of some practical interest. The effect of non- Newtonian character of the fluid is examined.
Resumo:
The incorporation of sucrose into the thermophilic fungus,Thermomyces lanuginosus, occurred only in mycelia previously exposed to sucrose or raffinose. Sucrose uptake and invertase were inducible. Both activities appeared in sucrose-induced mycelia at about the same time. Both activities declined almost simultaneously following the exhaustion of sucrose in the medium. The sucrose-induced uptake system was specific for \beta -fructofuranosides as revealed by competition with various sugars. The induction of sucrose uptake system was blocked by cycloheximide, showing that it was dependent on new protein synthesis. Transport of sucrose did not seem to be dependent on ATP. Rather, uptake of this sugar seemed to be driven by a proton gradient across the plasma membrane. The uptake system showed Michaelis-Menten kinetics.